
Version 3 – April 2012

Adobe® Central Output Server
Migration Guide

A technical guide for migrating
to Adobe LiveCycle® Output ES

 Version 3 – April 2012 Page ii

Table of Contents

1. Introduction .. 1

Intended Audience .. 1
Goals and Scope.. 1
Organization of this Document ... 2

2. Product and Technology Overview ... 3
Why Move to LiveCycle ES? .. 3
Form Design ... 5
Data Integration .. 5
Terminology ... 5
Processing ... 6
Comparison Summary .. 7
Related Documentation ... 9

3. Central Migration Bridge .. 10
Overview of the Central Migration Bridge Services ... 10
How the Central Migration services work ... 11

The centralDataAccess service in detail ... 11
Comparing LiveCycle Central Migration Bridge with Central .. 14
Typical Usage Scenario ... 16
Central Migration Bridge Samples ... 17

Data Access, Merge and Print .. 17
Transformation Agent and Page X of Y .. 17
Data Access Service Component.. 18

How is the Central Migration Bridge licensed ... 18
4. Forms ... 19

Importing Output Designer Forms .. 19
Import Goals and Constraints .. 19
Form Objects.. 20
Grouped Objects .. 21
Foundation Pages .. 21
Fonts ... 21
Subforms ... 22
Preamble Handling .. 22
Working with Imported Forms .. 23
The “import fields only” checkbox ... 24

Basic Forms ... 24
Multi-Part Forms ... 25
Dynamic Forms ... 25

Master Pages .. 25
Preambles ... 26
Expandable Objects .. 27
Field Overflow ... 28
Tables .. 28
Floating Fields ... 29
Calculations .. 29
Fragments ... 30
Form Variables ... 30

 Version 3 – April 2012 Page iii

Page Counts ... 31
Locale Settings .. 32

5. Data .. 34
Data Formats .. 34

Central Transformation Agent .. 34
Moving to XML Data ... 34
DAT is flat, XML is structured ... 35
XML Data is Case-Sensitive ... 36
Formatting Rich-Text Data ... 37
Embedded Field References .. 38
Unicode .. 39

Binding Data to Forms .. 40
Global Fields and Global Data ... 40
Form-Driven Data Binding .. 42
Data-Driven Data Binding ... 42
Multi-Record Data .. 42
Modifying Form Objects from Data .. 44

6. Document Generation .. 45
Agents and Services .. 45
Invoking LiveCycle Output ... 45

Identifying the Form ... 45
Document Generation and Print Options ... 46

Testing and Previewing .. 46
Device Profiles ... 47
Font Handling .. 48

Font Availability and Mapping .. 48
Font Embedding ... 49

Paper Handling .. 49
Duplexing .. 49
Tray Handling .. 50

Faxing.. 51
7. Web Output Pak .. 52

XPR and Transaction Processing ... 52
Agents ... 52

8. Hosting Environment .. 53
9. Field-Nominated Commands ... 54

^continue .. 54
^copies ... 54
^currency .. 54
^data ... 54
^define ... 54
^duplex .. 55
^eject .. 55
^field ... 55
^file .. 55
^form .. 55
^global ... 56
^graph .. 56
^group .. 56
^inlinegraphbegin, ^inlinegraphend ... 56
^key ... 56

 Version 3 – April 2012 Page iv

^macro ... 57
^page .. 57
^passthru ... 57
^popsymbolset ... 57
^pushsymbolset ... 57
^record ... 57
^symbolset ... 57
^shell ... 58
^subform ... 58
^tab ... 58
^trayin, ^trayout ... 58
^$page ... 58

 Version 3 – April 2012 Page v

About the contributing authors

4Point's breadth and depth of experience developing and deploying rich, customer-engaging
solutions in all sectors, including financial services, life sciences, government, education, and
manufacturing, has made them the Adobe solution provider of choice for numerous Fortune 1000
companies. With 4Point, organizations get immediate access to real-world experience in every
aspect of document-centric business process management solutions. Utilizing Adobe LiveCycle ES
and Flash, 4Point offers users of their custom or best practice solutions, be they customers,
constituents or employees, an intuitively engaging experience built on a robust enterprise
platform.

Version 3 – April 2012 Page 1 of 58

1. Introduction

Intended Audience

This document is intended for technologists who have experience building document generation
and print solutions with the Adobe Central Output Server family of products (Central), including
Adobe Central Pro Output Server, Web Output Pak, and Output Designer. It will help individuals
whose organizations are either considering, or beginning a migration to Adobe LiveCycle® Output ES
by comparing and contrasting the capabilities of the two product lines, describing varying migration
scenarios and available tools, identifying Central features that do not exist in LiveCycle Output, and
describing some of the challenges and remedies.

It is assumed that readers have prior hands-on experience with the Central family of products and are
proficient in their knowledge and understanding of these products. In particular, it is assumed that
readers have an understanding of how forms (also known as templates) are designed using Adobe
Output Designer, how dynamic forms are constructed using subforms, what the role of preambles is,
and how the field-nominated data format utilized by Central is used to drive document generation
and printing.

In terms of knowledge required to understand LiveCycle Output, it is assumed that readers have
some familiarity with XML and related standards and tools, an awareness of the major features of
LiveCycle Output, and some experience with LiveCycle Designer.

Chapter 2, Product and Technology Overview, provides an overview intended to help readers quickly
understand basic differences between Central and LiveCycle Output; the remaining chapters provide
significantly greater detail.

Goals and Scope

This document details how the features of the Adobe Central Output Server family of products
compare to LiveCycle Output ES, often in a technical way. Assuming that readers have previous
experience developing document generation and printing solutions with Central, this document
seeks to leverage their existing experience and knowledge so they can quickly understand how
equivalent solutions may be developed with LiveCycle Output.

Central and LiveCycle Output are intended to address the same core document generation and
printing goals, but they differ in terms of their technological foundations, breadth of functionality,
use of standards, and countless details. Nonetheless, the common heritage and goals of these
products provides for a common basis of understanding and learning.

This document is not a tutorial on the overall LiveCycle Output product or any of its solution
components, nor can it replace any of the product documentation or samples provided with
LiveCycle Output. Instead, this document provides an introduction to many aspects of LiveCycle
Output, and then refers readers to the LiveCycle Output product documentation for additional
learning.

The document does not attempt to discuss Output Pak for SAP; LiveCycle Output ES does not provide
SAP integration. These customers are encouraged to investigate “SAP Interactive Forms by Adobe”;
information available here http://www.adobe.com/ap/enterprise/partners/sap.html

http://www.adobe.com/ap/enterprise/partners/sap.html

Version 3 – April 2012 Page 2 of 58

Organization of this Document

This document is divided into the following sections:

• Chapter 2, Product and Technology Overview, provides a high-level overview of the major
aspects and solution components of the Central family of products and LiveCycle Output ES.
This chapter offers a quick understanding of the basic differences between Central and
LiveCycle Output.

• Chapter 3, Central Migration Bridge, provides a detailed examination of the Central Migration
Bridge capability of LiveCycle Output ES. The Bridge provides a way for existing Output
Designer forms, transformation definitions and field-nominated data to be used in the
LiveCycle environment. Use of the Bridge provides a quick transition to the LiveCycle
platform for your Central applications; over time applications can be migrated in a staged
fashion matching business needs and demands; new applications can be developed and run
on the same LiveCycle server taking advantage of Lifecycle’s many capabilities.

• Chapter 4, Forms, provides a detailed examination of forms in Central and LiveCycle Output
from two perspectives. First, LiveCycle Designer (the form designer within LiveCycle Output)
has the capability to import Central forms created with Output Designer. How this import
capability works, the results it produces, and some of the areas that may require additional
attention once the import is complete are discussed. Second, this chapter offers an overview
of the major features of forms created with LiveCycle Designer and how those capabilities are
similar to or different from forms created with Output Designer.

• Chapter 5, Data, provides information relevant to transitioning from the primary data format
of Central (the field-nominated format) to the XML data capabilities available with forms
created with LiveCycle Designer. First, it discusses XML as a data format, along with
comparisons to the field-nominated format in Central. Then, it explains how LiveCycle
Output combines XML data with forms to generate output.

• Chapter 6, Document Generation, explores important aspects of how LiveCycle Output and
LiveCycle Designer can be used to generate documents and printed output. Topics of
discussion include common methods of invoking LiveCycle Output, how to test and preview
forms in LiveCycle Designer, how formats and print devices are handled and configured, and
specific aspects of output generation such as font and paper handling.

• Chapter 7, Web Output Pak, offers a brief discussion of how Web Output Pak relates to
LiveCycle Output.

• Chapter 8, Hosting Environment, provides a brief discussion of the different platform and
hosting requirements of Central and LiveCycle ES.

• Chapter 9, Field-Nominated Commands, lists most of the commands that compose the field-
nominated format in Central and directs readers to relevant resources for more information
on how to accomplish similar tasks, such as the original field-nominated command.

Version 3 – April 2012 Page 3 of 58

2. Product and Technology Overview

Why Move to LiveCycle ES?

It is important to note that while this document seeks to explain the effort to migrate applications
from the Central Output Server family to LiveCycle Output ES, Adobe acknowledges that migration
represents work which requires planning and is often carried out over time as part of an overall
application support lifecycle. It is with this understanding that Adobe is committed to the continued
sale and support* of the Central Output Server family so that clients have the flexibility they need to
either maintain their existing installations or migrate to the LiveCycle ES platform on a schedule that
meets their organizational requirements. In addition LiveCycle Output ES includes the Central
Migration Bridge to help stage the migration process and facilitate the move to the LiveCycle
platform.

Current information regarding the Central family as well as support and migration options can be
found on Adobe’s website;

• http://www.adobe.com/products/livecycle/outputserver/

• www.adobe.com/products/server/outputserver/move_lces.html

• www.adobe.com/support/programs/policies/policy_enterprise_lifecycle.html

* End of extended support date and thus End-of-life for Central 5.7 product family is June 30, 2016

Adobe LiveCycle ES (Enterprise Suite) software is an integrated enterprise server solution you can use
to extend the reach of your business processes to engage customers, partners, or suppliers. It consists
of individual modules, including Adobe LiveCycle Output ES. It offers many benefits, including:

• LiveCycle Workbench ES, an integrated process design and development environment

• LiveCycle Designer ES, an award-winning XML form design environment; design and manage
extensive form libraries using referenced fragments to decompose forms into reusable parts
and styles for consistency..

• Robust support for interactive, on-demand, and high-volume document processes

• Integrated document security and document rights management solution.

• Extensive document conversion capabilities, PDF manipulation and integrated content
services including Adobe Content Repository Extreme (CRX)

LiveCycle ES takes advantage of industry-standard J2EE (Java 2 Enterprise Edition) application servers
and extends beyond document generation to build end-to-end processes that include interactive
forms, process management, and document security. LiveCycle leverages the ubiquity of Adobe
Reader®, Adobe Flash® Player, and web browsers — along with PDF and XML standards — to capture
information from users, automate document processes, and integrate with existing enterprise
infrastructure. Its robust architecture makes it ideally suited for organizations taking advantage of
today's best-in-class enterprise architectures.

http://www.adobe.com/products/livecycle/outputserver/
http://www.adobe.com/products/server/outputserver/move_lces.html
http://www.adobe.com/support/programs/policies/policy_enterprise_lifecycle.html

Version 3 – April 2012 Page 4 of 58

LiveCycle ES includes the following solution components:

 Forms Automation:
• LiveCycle Forms ES − Create and deploy interactive XML-based templates as PDF or HTML

forms.
• LiveCycle Reader Extensions ES − Activate functionality within Adobe Reader software,

enabling end users to save data locally, add and save annotations, apply digital signatures,
dynamically embed data in a barcode, and integrate with web services for PDF forms.

 Document Automation:

• LiveCycle Output ES − Dynamically generate personalized documents for processes that
require on-demand output support. Assemble PDF packages from existing files or pages.
Convert PDF files to PostScript®, PDF/A, TIFF or other image file formats. Includes the Central
Migration Bridge.

• LiveCycle PDF Generator ES − Automate the conversion of office and industry-standard file
formats to PDF documents. Assemble PDF packages from existing files or pages. Convert PDF
files to PostScript®, PDF/A, TIFF or other image file formats.

• LiveCycle Production Print ES* − Dynamically generate personalized documents for high-
volume production environments. Support production print languages, such as AFP and
IJPDS, as well as a wide range of post-processing and envelope insertion requirements.

 Document and Information Security:

• LiveCycle Rights Management ES − Manage usage rights to protect sensitive documents.
• LiveCycle Digital Signatures ES − Automate the validation of digital signatures in PDF

documents. Publish "certified" documents that prove authenticity for recipients

 RIA Services:
• LiveCycle Data Services ES − Streamline the development, integration, and deployment of

rich Internet applications

 Process Management:
• LiveCycle Process Management ES − Build streamlined, end-to-end processes which include

people, systems, content, and business rules.
• LiveCycle ES Connectors for ECM − Integrate LiveCycle applications with industry-leading

enterprise content management (ECM) systems

Communications Management
• Correspondence Management Solution – Leverage LiveCycle platform for a complete

Correspondence design, generation and production environment.

* LiveCycle Production Print ES provides advanced functionality that is not offered in either the Central product
family or LiveCycle Output ES. This guide focuses on the migration from Central Output Server family products to
LiveCycle Output ES. While design time information relating to LiveCycle Designer ES would apply to both Output
and Production Print, the runtime environments are substantially different. As a result, this guide does not
attempt to address runtime information for Production Print.

Version 3 – April 2012 Page 5 of 58

Form Design

Central forms are designed using Output Designer, which offers a
graphical environment for designing both the visual aspects of a
form, and the behavioral characteristics of the form. Forms created
with Output Designer are saved in an .ifd binary format, and
deployed to Central in an .mdf binary format.

LiveCycle Output forms are also designed using the graphically
rich environment provided by LiveCycle Designer. The set of tools
and capabilities offered within LiveCycle Designer are significantly
greater than Output Designer. In many cases, features and
capabilities that required hand-coding of preambles or data in
Central are now available as equivalent first-class features of
LiveCycle Designer. Forms created with LiveCycle Designer are
saved in an .xdp format, which is an XML markup format, when
they are to be deployed to LiveCycle Output.

Chapter 4, Forms, provides a more detailed discussion of topics
related to migrating and designing forms.

Data Integration

While Central has supported XML data as an input format for many
years, the primary data format Central supports is known as the
field-nominated format. Central also provides support for a
number of legacy data formats and includes a software for
assisting with transforming other non-supported legacy formats to
the field-nominated and XML format: the Visual Transformation
Editor and Transformation Agent which generate and execute
transformation definition files; .tdf format

Forms created with LiveCycle Designer can connect with data
sources such as databases and web services. However, the primary
supported data format is generic XML data that may optionally
conform to a custom schema of your choosing. Aside from this
emphasis on XML, there is no specific LiveCycle data format.

LiveCycle Designer provides a robust set of tools for integrating
XML data with forms. There is no equivalent to the Visual
Transformation Editor in the LiveCycle Output suite of solution
components.

Chapter 5, Data, provides a more detailed discussion of topics
related to moving from field-nominated data, to XML data.

Terminology

Output Designer is used to create
templates and Central generates
documents. Some users of Output
Designer and Central may use the term
form as an alternative to template,
especially if their experience with
Central or Output Designer originated
in earlier versions of these products.
Other people may strongly associate
the word form with an interactive
electronic form, such as an HTML or PDF
form.

LiveCycle Designer is a product for
designing forms regardless of whether
the forms will be filled interactively,
printed, or used to generate a
document with LiveCycle Output.
Therefore, LiveCycle Designer is always
used to create forms. LiveCycle reserves
the word template for predesigned
forms that can be used as a basis for
designing new forms. This document
exclusively uses the term form
according to the LiveCycle usage, even
when referring to forms created with
Output Designer (formerly templates).

There is one additional area of potential
confusion around the use of the term
form. One of the LiveCycle modules is
called LiveCycle Forms ES (note the
capitalization of Forms). This document
focuses on LiveCycle Output, not
LiveCycle Forms; therefore, references
to LiveCycle Forms are rare. However, it
is often important to distinguish
between forms created with Output
Designer, and forms created with
LiveCycle Designer. Output Designer
forms are often referred to as Central
forms, whereas forms created with
LiveCycle Designer are referred to as
LiveCycle forms (note the lowercase
forms).

Version 3 – April 2012 Page 6 of 58

Processing

Central is a processing engine that receives data, optionally combines it with a form, and invokes one
or more software components (known as agents) according to process descriptions contained within
a text file known as the Job Management Database (JMD).

Central typically integrates with other software systems by monitoring file-system directories (known
as collector directories). Central can also leverage agents as adapters between its collector
directories and other means of communication, such as printer queues or e-mail.

LiveCycle provides a development environment known as LiveCycle Workbench. It provides an
integrated environment for developing applications; a graphically rich process development tool
known as Process Designer, a repository for saving application assets, access to LiveCycle Designer
and other tools. Applications are designed by assembling services from the various LiveCycle
modules; including LiveCycle Output and LiveCycle foundation services for manipulating XML data,
generating documents, assembling documents, sending output to printers and e-mail, and more.
Custom components can also be developed and incorporated into applications. Applications are
deployed to and executed on a LiveCycle production instance. LiveCycle provides an Administration
UI for setting-up, managing and monitoring a LiveCycle instance.

Unlike Central, which is a native application designed to run on several platforms, LiveCycle Output is
a Java™ enterprise application, also known as a J2EE application. As a J2EE application, LiveCycle
Output must be run within a supported J2EE application server environment, installed on a
supported platform. These distinguishing architectural features of LiveCycle Output provide a basis
for significant scalability and integration opportunities. However, this approach also firmly defines
LiveCycle Output as a server application not intended to be deployed to desktop systems, except for
development and testing. For more information on this topic, see Chapter 8, Hosting Environment.

Central has very different performance characteristics compared to LiveCycle Output. As a native
application with limited layout capabilities it will format individual and batches of documents
significantly faster than LiveCycle Output, anecdotally at least 2X faster depending on scenario; if
FNF/DAT data is in use rather than XML date up to 4X faster and if there is no need for “Page y of n”
page number formatting which requires 2 formatting passes for Central up to 8X faster. These are
very rough rules of thumb and real results will certainly vary – it is highly recommended that
performance testing / sizing be part of any migration effort especially where high volumes 100,000+
pages/day are a factor. LiveCycle Output however provides far more robust access to computing
resources, no special set up is required to access the power of available CPU/Cores/Servers as
required for Central where multiple instances must be established and work flow managed to
balance resource use across the computing platform.

Chapter 6, Document Generation, provides a more detailed discussion of how generating documents
with LiveCycle Output differs from Central.

Version 3 – April 2012 Page 7 of 58

Comparison Summary

The following table provides an additional comparison of Adobe Central Pro Output Server v5.7 and
LiveCycle Output ES. Where noted, it compares capabilities delivered through related products such
as Web Output Pak or LiveCycle Forms ES.

Feature or
Capability

Central Pro Output Server 5.7 LiveCycle Output ES

Hosting
environment

Native application with limited
opportunities for scaling and load
balancing

J2EE application that is scalable and can be
clustered and managed by the application
server. Requires database software.

Operating system Windows 2000/2003/2008

Linux Red Hat / SUSE

Solaris
AIX
HP-UX
OS/400 (last version 5.5)

Windows 2003/2008
- JBOSS, WebSphere or Weblogic
Linux Red Hat / SUSE
- JBOSS, WebSphere or Weblogic
Solaris - WebSphere or Weblogic
AIX - WebSphere
Not supported
Not supported

Invocation Command-line, collector
directory, e-mail

Web service, REST, Java API, e-mail, watched
folders (collector directory) − All methods
can invoke a LiveCycle foundation or
module service; or a process created in
LiveCycle Workbench and deployed as a
service.

Design
environment

Output Designer LiveCycle Designer
Rich WYSIWYG modern GUI, drag-and-drop
XML schema integration, declarative sub-
form design, scripting models for
calculations and logic, widow and orphan
control, page n of m, nested tables, spell
checking, and more

Form management Object library

PDF preview, test print

Integrated repository, form and fragment
library (fragments are referenced form
objects)
PDF preview, test print (Print Form With
Data)

Data handling XML, field-nominated data,
comma-delimited, fixed-record

Other formats accommodated
with Visual Transformation Editor
and Transformation Agent.

XML data, transformation between XML
formats provided with support for XSLT

Not supported

Version 3 – April 2012 Page 8 of 58

Feature or
Capability

Central Pro Output Server 5.7 LiveCycle Output ES

Output formats PDF
PostScript
PCL5e, PCL5c, PCL6(XL)
Zebra Label – ZPL
Intemec Label – IPL
TEC Label – TPCL
Datamax Label – DPL
Monarch Label
Windows driver
Fax drivers
HTML (Web Output Pak only)

PDF, PDF/A-1a, PDF/A-1b
PostScript
PCL 5e, PCL5c
Zebra Label – ZPL
Intemec Label – IPL
TEC Label – TPCL
Datamax Label – DPL
Not supported
Not supported
See Chapter 8, Faxing
HTML (LiveCycle Forms only)

Ability to assemble
individual forms
into documents

Use ^form field-nominated
command to use individual forms
when formatting one document

Assembler service
• Insert one or more subforms at insertion

points defined in forms by LiveCycle
Designer; generating a customized .xdp
for formatting with LiveCycle Output

• Combine individual forms (including
those with insertion points) into one
form (.xdp) for formatting with LiveCycle
Output.

Process Design
Environment

Central Pro Output Server Job
Management Database (JMD),
Web Output Pak, XML Processing
Rules (XPR)

Orchestration of LiveCycle services via
LiveCycle Workbench

PDF conversion
formats;

Convert PDF to

None • PostScript for server-based PDF printing
to non-PDF printers

• PDF/A-1b and Single & multipage TIFF
to support archiving requirements

• Other image formats such as PNG and
JPEG

Ability to assemble
multiple PDF
documents

None Assembler service (part of LiveCycle Output)
• Combine PDF files or pages
• Combine multiple documents into one

single file, or create a document
portfolio with multiple documents – add
a flash based navigator for portfolio
contents.

• Automatically generate a hyperlinked
table of contents

• Add watermarks, backgrounds, overlays
• Add headers, footers, or numbering
• Add, remove, rotate, and scale pages
• Import, export, and manipulate

attachments, annotations, links, and
bookmarks in XML

• Manipulate document metadata

Version 3 – April 2012 Page 9 of 58

Related Documentation

Two major categories of additional documentation referenced in this document provide deeper
levels of understanding: documentation related to the LiveCycle Output ES product and
documentation related to the various standards leveraged by LiveCycle Output.

Additional product-related documentation includes:

• XML Forms Architecture Specification

The technology underlying LiveCycle Designer, the forms it produces, and the manner in
which these forms behave is largely a result of a family of XML markup languages known as
the XML Forms Architecture (XFA). This markup language is defined by a formal specification
document available from the Adobe website at:
http://partners.adobe.com/public/developer/xml/index_arch.html

Additional standards-related documentation includes:

• PDF Reference, Sixth Edition, version 1.7

A formal specification of PDF is available from the Adobe website at:
http://www.adobe.com/devnet/pdf/

• Internationalization

The International Organization for Standardization (ISO) provides several standards
associated with the accurate interchange of locale-specific information, such as identifying
locales and languages (ISO 639-1, ISO 3166-1) and expressing currencies (ISO 4217) and dates
and time (ISO 8601). These standards are used by XML, XFA, and solutions components of
LiveCycle Output.

• Unicode

Unicode is a standard for the encoding and interchange of characters and symbols used in
the languages of the world. XML leverages Unicode for all content. More information on the
Unicode standard can be found on the Unicode website at: www.unicode.org

• XML 1.1

LiveCycle Output utilizes XML and XML-related technologies throughout. The formal
specification of XML is available from the World Wide Web Consortium (W3C) website at:
www.w3.org/TR/xml11

• XSL Transformations (XSLT), version 2.0

XSLT is a markup language and a technology used to transform XML. Within the context of
LiveCycle Output, XSLT is often referenced as a mechanism for transforming XML data into a
format more suitable for use with a particular LiveCycle form.

http://partners.adobe.com/public/developer/xml/index_arch.html
http://www.adobe.com/devnet/pdf/
http://www.unicode.org/
http://www.w3.org/TR/xml11

Version 3 – April 2012 Page 10 of 58

3. Central Migration Bridge

This chapter will explore the Central Migration Bridge (Bridge) capability of LiveCycle Output ES. The
Bridge provides a way for existing Output Designer forms, transformation scripts and field-nominated
data to be used in the LiveCycle environment.

Use of the Bridge provides a quicker transition to the LiveCycle platform for your Central applications
than if you were to conduct a complete native migration to LiveCycle. A native migration requires
that all forms be converted from Output Designer format to LiveCycle Designer format as well all
non-XML data sources need to be converted to XML data. If you have many forms and data sources
this process will constitute the majority of your conversion effort.

With the Bridge the principle work required is the re-implementation of the Job Management
Database logic into LiveCycle processes; as well the redirection of data from source systems to the
LiveCycle server using an available LiveCycle invocation method. Output Designer forms and
transformation scripts can be used by the bridge without modification.

Over time the Output Designer forms and application data sources can be migrated in a staged
fashion matching business needs and demands; new applications can be developed and run on the
same LiveCycle server taking advantage of Lifecycle’s many capabilities.

Note; if your goal is to move your Central implementation directly to a native LiveCycle
implementation then this section may be skipped.

Overview of the Central Migration Bridge Services

The Central Migration Bridge consists of 4 services:

• centralMerge which runs the Central Print Agent (jfmerge.exe).

• centralTransformation which runs the Central Transformation Agent (jftrans.exe).

• centralXMLImport which runs Central XML Import Agent (xmlimport.exe).

• centralDataAccess which will read a .DAT file and liberate important values from it into an
XML structure that can then be parsed via an XPath expression. This will enable the user to
process some of the options that are passed to the .DAT file. It is not intended to be a
general purpose .DAT to XML converter. Instead it is intended to allow someone to get
access to data in the incoming data stream that may be used afterwards in the LiveCycle
process that invoked it.

The Central Migration Bridge requires Central Pro 5.7. If Central Pro 5.7 is installed in the default
location, then the Central Migration Bridge will locate it automatically. If Central Pro 5.7 is installed
into some location other than the default location, then the alternate location must be configured
during installation or via the LiveCycle adminui. The Central Migration Bridge does not need Central
to be running in order to function; it just needs access to the Central Agents executables utilized by
the Central Migration Bridge services and to the INI files corresponding to those agents. For
simplicity of configuration, it is recommended that Central Pro 5.7 be installed in the default

Version 3 – April 2012 Page 11 of 58

installation location before LiveCycle is installed and configured. Please refer to the Central
installation documentation for installation instructions.

How the Central Migration services work

The LiveCycle Central Migration Bridge services are LiveCycle Document Service Component (DSC)
that invoke the Central Agent executables. The services are written in Java (like all other DSCs) and
make a call to Java’s Runtime.exec() method in order to invoke the Central Agent executable files
which still reside in the Central installation directory. The Central INI files that were installed are still
used. Logging has changed and is no longer appended to a common file by default but instead a
separate log is maintained for each Central Agent invocation. Logging changes are discussed in
more detail later on.

The Central service does not need to, and should not, be running. Instead, the LiveCycle application
controls the processing of incoming transactions. LiveCycle receives a transaction using a standard
LiveCycle endpoint, such as a LiveCycle watched folder.

The various input parameters are passed to the Central Agent executables as command line
parameters (e.g. –z, -aii, -arx,-atf, etc.). Input document objects are written to a temporary file and
then the names are passed in to the Central agents as command line parameters. Temporary file
names are generated for the output parameters and they are also passed to the Central Agent
executables as command line parameters. Lastly, any miscellaneous parameters such as the ini file
location are also passed in to the Central Agent executable by the Central Migration Bridge services.

Each Central Migration Bridge service has an “Other Command Line Options” parameter that
overrides the standard parameters that the Migration Bridge services generate and pass to Central’s
Agent executables. This means that, for example, if you don’t wish to capture the Print Agent output
in a LiveCycle document object, you can supply a –z command line option to the CentralMerge
service and redirect the output from Print Agent to a file of your choosing. Using the –z command
line option is necessary when printing using the Windows printer drivers (see “LiveCycle supplies –z
parameter to redirect output to a temporary file” below). You may also redirect the logging
output to a common log file using the –all command line option. Lastly, it also means that if you
copy all the command line options you used in your JMD into the “Other Command Line Options”
parameter you should get the same result as you did under Central.

Unless overridden by command line options, the results of the Central Migration Bridge service
operations are a series of documents and a Central Result object (which is a composite of all the
result documents). The resulting documents objects contain the contents of what is, under Central,
the output file, the log file, the response file and the trace file. The document objects do not have a
content type set, if the content type is required, it may be set explicitly using the
setDocContentType() XPath function.

The centralDataAccess service in detail

While the other Central Migration Bridge services leverage existing Central executables (and
therefore are documented in their associated Central documentation), the centralDataAccess service
is completely new and warrants a more detailed explanation of its workings.

The centralDataAccess service is designed to provide a LiveCycle process access to key values in the
incoming field-nominated data stream – values such as job parameters, email addresses, printer
names, etc. It is not intended as a general field-nominated data stream conversion utility. It does not

Version 3 – April 2012 Page 12 of 58

implement all the possible field-nominated commands (or even most of them). It implements
knowledge of a few simple commands: ^field, ^global, ^file and ^job. It parses these commands and
makes their values available as an XML document within Workbench.

Here is an example .DAT file:

^job memo -afp"C:\forms" -alp"C:\logos"
^symbolset 108
^page 1
^field MEMO_TO
Pat Brown, Manager, Purchasing
^field MEMO_CC
Kelly Green, Manager, Accounts Receivable
^field MEMO_FROM
Chris Black, Chief Financial Officer
^field MEMO_DATE
January 31, 1999
^field MEMO_SUBJ
Budget Meeting
^field MEMO_MSG
The meeting scheduled for Monday, February 19th at 2:00
is rescheduled to Tuesday, February 20th at 3:30.
If this conflicts with other activities on your calendar,
please let me know immediately.

Here is the resulting XML document after processing this .DAT:

<?xml version="1.0" encoding="UTF-8"?>
<File>
 <jobs>
 <job>memo</job>
 <job>-afp"C:\forms"</job>
 <job>-alp"C:\logos"</job>
 </jobs>
 <fields>
 <MEMO_TO>Pat Brown, Manager, Purchasing</MEMO_TO>
 <MEMO_CC>Kelly Green, Manager, Accounts Receivable</MEMO_CC>
 <MEMO_FROM>Chris Black, Chief Financial Officer</MEMO_FROM>
 <MEMO_DATE>January 31, 1999</MEMO_DATE>
 <MEMO_SUBJ>Budget Meeting</MEMO_SUBJ>
 <MEMO_MSG>The meeting scheduled for Monday, February 19th at
2:00is rescheduled to Tuesday, February 20th at 3:30. If this
conflicts with other activities on your calendar,please let me know
immediately.</MEMO_MSG>
 </fields>
</File>

After processing this DAT file a LiveCycle process can access the data using an XPath expression. To
illustrate this, the following table shows some example XPath expressions and their resulting values.
This example assumes that the file above was processed and placed in an xml variable called
dataDoc.

Version 3 – April 2012 Page 13 of 58

XPath Expression Resulting value

/process_data/dataDoc/File/jobs/job[1] memo

/process_data/dataDoc/File/jobs/job[2] -afp"C:\forms"

/process_data/dataDoc/File/fields/MEMO_TO Pat Brown, Manager, Purchasing

/process_data/dataDoc/File/fields/MEMO_DATE January 31, 1999

/process_data/dataDoc/File/fields/MEMO_SUBJ Budget Meeting

Here is screenshot of an example orchestration that utilizes the centralDataAccess service to emulate
a JMD by reading the job name and processing each job individually..

In this example, the process monitors a watched folder for incoming .DAT files. When a .DAT file is
found, the centralDataAccess service processed the job and field statements generating an XML
document and then a subprocess is called, based on the name of the JOB.

The centralDataAccess service can also be used to extract information such as email addresses to be
passed as parameters to methods of the Email service or printer information to be passed to the
sendToPrinter method of the Output service.

Version 3 – April 2012 Page 14 of 58

Comparing LiveCycle Central Migration Bridge with Central

There are some significant differences between Central applications and LiveCycle applications
utilizing the Central Migration Bridge; this section details these differences and various
considerations to help plan a migration.

• No Central Job Management Database.
The Job Management Database (JMD) does not exist in the Central Migration Bridge. In
Central it serves several different purposes:

o Job and task definition – this is handled by the process design capabilities in
LiveCycle Workbench.

o Printer definition – the target device will need to be stated in the process design or
passed in via the data file.

o Managed Memory – this feature is not included in the Central Migration Bridge. This
feature dates back to a time when printer memory was limited and bandwidth
speeds were low. It is no longer required with modern printers.

• No Central Log file.
When Central launches an agent the log file from that agent is appended to the Central log.
This means that there is one place to find all Central error messages. Under LiveCycle, each
time a Central Bridge service is invoked; it creates its own log. This means there is no
common location where all logs are sent.

As mentioned earlier, the –all command line option can be placed in the “Other Command
Line Options” parameter when invoking a Central Migration Bridge service in order to
redirect the output to a common location however be aware that due to the multithreaded
nature of LiveCycle the log output from multiple Central Migration Bridge services may be
interleaved in the common log file unless the multi-threaded nature of LiveCycle is inhibited.
See the next section for information on single-threading LiveCycle.

When debugging a process that uses the Central Migration Bridge services, the first step is
usually to turn on “recording” in the LiveCycle workbench in order to determine where in the
process the error is occurring. Once the issue has been determined to be in a Central
Migration Bridge service, the second step is usually to add a –all command line option in the
“Other Command Line Options” parameter of that service in an effort to capture the log file.
The log file will typically contain a message that points to the cause of the problem. Without
specifying the –all command line options, any exception that occurs will redirect the control
flow of the LiveCycle process down the exception path and any log file will be lost.

• LiveCycle processing is multi-threaded.
Central processes one incoming job at a time so it is possible to use fixed names for
temporary files. Each job completes before the next one begins, allowing the same filename
to be reused by each job. Under LiveCycle multiple jobs may run at the same time, so
temporary files must be uniquely named. The use of LiveCycle document objects is
recommended, where possible.

If necessary, the multi-threaded nature of LiveCycle may be inhibited so that only one Central
Migration Bridge job runs at a time. This can be accomplished by using just one LiveCycle
process for all Central Migration Bridge jobs and configuring it to use a watched folder
endpoint. Configuring that watched folder endpoint to turn on “throttling” and reducing the

Version 3 – April 2012 Page 15 of 58

batch size down to 1 will ensure that only one Central Migration Bridge job is processed at a
time. There are also other ways of producing this same effect however they require
advanced LiveCycle knowledge to implement.

• LiveCycle triggering mechanisms are different.
Central accepts jobs in other ways besides the Central collector directory such as via named
pipes and through print queues. These additional ways eventually dump a file into the
Central collector directory and so can still be used with LiveCycle by reconfiguring the named
pipe processor to point to a LiveCycle watched folder instead of a Central collector directory.

• LiveCycle does not provide any auxiliary utilities for managing the input queue.
Central provides several utilities that allow an administrator to display and manipulate jobs in
the Central queue. No corresponding utilities exist in LiveCycle for the Central Utilities
(jfControl, jfc, jfjmd, jfkick, jflisten, jfp, jfq, jfrm, and jfstat).

• LiveCycle performs exception handling.
If any errors occur in the execution of a Central Migration Bridge service they will generate a
LiveCycle exception which must be handled by the process invoking the Central Migration
Bridge service. Unless overridden by a –arx command line option, there will not be a
response file if LiveCycle detects an error during a Central Bridge service operation.

• LiveCycle supplies –z parameter to redirect output to a temporary file.
This can be problematic in some situations, such as when printing using the Windows
drivers. When using the Windows drivers the appropriate –z parameter must be specified in
the “Other Command Line Options” parameter.

• LiveCycle provides email and faxing capabilities.
There are no Central Migration Bridge services for sending emails or faxes because existing
LiveCycle mechanisms facilitate this already. See Foundation Email service in the Workbench
service reference for information on emailing. For information on faxing, see the section on
Faxing later in this document.

The LiveCycle Central Migration Bridge is designed to allow existing Central customers to leverage
the benefits of moving to LiveCycle but the Central services still have some characteristics that are
different than typical LiveCycle services. Experienced LiveCycle developers should not be caught off-
guard by these characteristics:

• None of the Central Migration Bridge services has any knowledge of the LiveCycle
repository.
Any repository resources that are not passed in as input parameters must be written to disk
prior to invoking a Central agent. The filenames of the temporary files must be passed to the
Central agent through the usual means (e.g. via an input file or via a command line option).

It is generally intended that Central assets (.mdfs, preambles, ^file inclusions, logos, etc.)
used by the Central Migration Bridge will reside on the local file system because that is where
Central traditionally stores them and doing so will reduce the amount of conversion work
that needs to be done to access the assets from the Central Migration Bridge services. For
example, if the incoming data stream references any external resource, such as using a
^form, ^file or ^graph command, then that external resource must be accessible via the local
file system they cannot reside in the LiveCycle repository.

Version 3 – April 2012 Page 16 of 58

In many simple scenarios though, it may be possible to store assets in the LiveCycle
repository, e.g. if all the assets used by a Central Migration Bridge service were provided to it
via LiveCycle document objects that are passed to it through input parameters. Storing
assets in the LiveCycle repository will simplify the resulting LiveCycle process.

Typical Usage Scenario

This section outlines the steps in a typical usage scenario for the Central Migration Bridge services.

1. Understand your current Central application.
• Understand how your current JMD works, including what steps are tied to which jobs,

which Central agents are invoked and what command line options they are invoked with.
• Understand how your current forms work, including what inline commands are used to

reference external files, e.g. \form, \graph and \subform.
• Understand what your current data stream looks like and how it functions, including the

inline commands above and Dynamic Merge commands that reference external files, e.g.
^file, ^form, ^graph, ^passthru, and ^shell.

• Understand which assets are required (.mdf, .tdf, etc.)
• Understand how interfacing applications invoke Central
• Understand what printers Central prints to and the network protocols use to access them

2. Install LiveCycle ES onto a machine where Central is already installed.
• On a new machine, this means installing Central first followed by LiveCycle.
• Alternatively, it could mean installing LiveCycle into your existing Central environment.

In the latter case, make sure the existing Central Environment meets or exceeds the
LiveCycle minimum system requirements. See the “Preparing to Install LiveCycle ES”
document for the LiveCycle system requirements.

3. Make your Central assets (.mdf, .tdf, etc.) accessible from LiveCycle
• On a new machine, this means copying all assets on to the new machine.
• On an existing machine, it means making sure that the user that the LiveCycle Java

Application Server runs under has permissions that allow access to the directories
containing the existing Central assets.

4. Create LiveCycle processes using LiveCycle Workbench to replace the JMD
• Choose an endpoint type for your process (e.g. Watched Folder, SOAP service, REST

service, etc.). A Watched Folder is the most likely choice as it is the LiveCycle equivalent
of the Central collector directory although your application may lend itself to more direct
invocation such as web services not previously available when using Central.

• Develop and test your process to replace your JMD.
• If printing, your process will include a “sendToPrinter” step. Make sure LiveCycle has

access to the printer and that the “sendToPrinter” step has the correct parameters to
access correct network printer protocols to address the printer.

5. Migrate your new LiveCycle processes from development to testing and then to production
environments.
• Copy your assets stored outside of LiveCycle from one environment to the next.
• Copy your assets stored inside of LiveCycle from one environment to the next. This is

usually accomplished by generating a LiveCycle archive file (.LCA) on the source system
that contains the necessary assets and importing that archive file on the target system.

Version 3 – April 2012 Page 17 of 58

Central Migration Bridge Samples

Adobe provides several samples to demonstrate how to utilize the Central Migration Bridge services.
They can be found here: http://www.adobe.com/devnet/livecycle/?view=samples under LiveCycle
Service Samples. The .zip file for each sample contains a Readme file that explains the sample in
detail.

Data Access, Merge and Print

This sample demonstrates how to utilize the centralDataAccess and centralMerge services to print to
a CIFS Shared printer.

Transformation Agent and Page X of Y

This sample demonstrates how to utilize the centralTransformation service as well as how to utilize
two invocations of the centralMerge service to perform standard Central “Page x of y” (sometimes
referred to as Page m of n) processing. The first invocation of centralMerge determines the number
of pages that will be rendered for each document and writes this information out to a trace file. The
second invocation uses the trace file as input to define the “page of” values. It then utilizes this
information to produce the “Page X of Y” result. This topic is discussed in detail in the Central Pro 5.7
Print Agent Manual on pages 119 and 121. The trace file method for generating a “Page x of y” can be
used for single document cases and batch cases where many documents are formatted using one
data file with many data sets.

This sample also demonstrates how to integrate the Central Migration Bridge services with other
LiveCycle services. The document result from the last centralMerge step is converted to a series of
images using the ConvertPDF service that is part of LiveCycle Output module. After the Central
generated PDF document has been converted to one or more images, those images are saved to disk.

This sample demonstrates how to utilize the Central Print Agent trace file to produce a “Page x of y”
on a document; however there is another simpler method often used in Central implementations
utilizing the @NumberPages variable. Because Central is not running in a Central Migration Bridge
scenario, this variable is not directly available; Print Agent passes this value back to Central via the
Print Agent .RSP file. However, this value can be accessed from LiveCycle; the approach still requires
two centralMerge service steps where the first one is used to generate the page count and the
second one is used to generate the final document. The main difference is that in between these two
steps the centralDataAccess service is used to retrieve the “NumberPages” field from the RSP
document generated in the first centralMerge service step; the .RSP file is in field-nominated format
and thus can be processed by centralDataAccess. The value retrieved is then passed to the second
centralMerge service step using the “Other Command Line Options” parameter using the “-agv”
option to set a global field value to a known global field.

http://www.adobe.com/devnet/livecycle/?view=samples

Version 3 – April 2012 Page 18 of 58

Here is what an example might look like:

In between the two centralMerge steps, a centralDataAccess service step retrieves the
“NumberPages” field from the RSP and then a setValue step constructs a command line option string
that is used in the “Other Command Line Options” parameter on the second centralMerge step. The
expression used in the setValue would look something like this:
 concat('-advglobal:pagecount=', /process_data/xmlDoc/File/fields/NumberPages). This
expression uses the XPath concat() function to create a command line that populates a global
variable called “pagecount” with the “NumberPages” variable from the RSP.

Data Access Service Component

Unlike the previous two samples, this is not an example of a LiveCycle process. Rather, this sample is
the Java source code for the centralDataAccess service. The sample is intended to allow an
experienced Java programmer to extend the functionality of the centralDataAccess service to fit
specific migration needs. The service itself is not intended to be a full field-nominated format
processor. Instead it is intended to allow someone access to a few pieces of key information in the
typical data file: job options and data values. The source code is provided as a starting point for
someone who wishes to create a new Document Service Component (DSC) that performs a similar
task. It can also provide an experienced Java programmer insight into the inner workings of the
centralDataAccess service.

How is the Central Migration Bridge licensed

The Central Migration Bridge is part of LiveCycle Output ES and as such is covered under the standard
LiveCycle ES EULA. It uses / invokes Central Pro Output Server 5.7 which must also be properly
licensed.

Version 3 – April 2012 Page 19 of 58

4. Forms

This chapter will explore topics related to migrating from Central forms to LiveCycle forms, but does
not attempt to be a tutorial or guide to the process of designing forms with LiveCycle Designer. The
topics explored in this section include:

• How to directly import your existing Central forms, originally created with Output Designer,
into LiveCycle Designer; and, a discussion of the goals and limitations of the import process.
See the section called “Importing Output Designer Forms”.

• Information related to designing basic forms, dynamic forms, and handling multi-part Central
forms. See the section called “Basic Forms”, the section called “Dynamic Forms”, and the
section called “Multi-Part Forms” respectively.

• A discussion of a capability with LiveCycle forms to create partial forms, known as fragments,
which can be assembled into whole forms. See the section called “Fragments”.

• The ability in LiveCycle forms to store arbitrary information in the form, in a manner
equivalent to variables or docvars in forms created with Output Designer. See the section
called “Form Variables”.

• The mechanism in LiveCycle forms to produce the page count information (e.g. page 3 of 5)
that commonly appears on generated documents. See the section called “Page Counts”.

Importing Output Designer Forms

LiveCycle Designer has the capability to import forms originally created with Output Designer. The
Output Designer form files, with .ifd file extensions, can be opened from the LiveCycle Designer
standard Open dialog by selecting the Output Designer Form (*.ifd) display option from the Files of
type drop-down list. Detailed instructions on the steps required to import an Output Designer form
are described in the "Importing Adobe Output Designer Form Files" section of the LiveCycle Designer
Help.

Although the LiveCycle Designer user-interface exposes the capability to import Output Designer
forms via a File > Open operation, it is important to remember that Output Designer form files are
imported into the LiveCycle format – in other words, LiveCycle Designer does not provide a capability
to save forms in an Output Designer compatible .ifd format.

Import Goals and Constraints

In order to successfully import Output Designer forms into LiveCycle Designer, the following
minimum requirements must be met:

• There must be a functioning installation of Output Designer present on the same system as
LiveCycle Designer. The import process utilizes components of the Output Designer
installation.

• Best results will be achieved when using LiveCycle Designer ES and Output Designer 5.7.

Version 3 – April 2012 Page 20 of 58

• If the Output Designer forms have dependent resources, such as image files, those resources
must be present in the locations referenced by the Output Designer forms.

• The presentment target .icf configuration file required by the Output Designer should be
available within the Output Designer installation.

The import capability does not import interactive form features (such as field validations) that may be
present in form files created with older versions of Output Designer.

The overall intent of the LiveCycle Designer capability to import Output Designer forms is to jump-
start the process of migrating existing forms to LiveCycle Designer, not to replicate the precise
behavior of existing forms. However, LiveCycle Designer will attempt to migrate features of Output
Designer forms, as follows:

• Form objects (e.g. text, graphics, fields, barcodes, etc.) are migrated to equivalent LiveCycle
form objects.

• Grouped objects are migrated to subforms.

• Foundation pages (JFMain pages) are migrated to LiveCycle Designer master pages.

• Fonts used in the original forms are recognized, along with Output Designer font mappings.
LiveCycle Designer will provide for additional font mapping during the import process.

• Subforms are migrated to LiveCycle Designer subforms, with consideration of the original
subform types, relationships, and dependencies on foundation pages.

• Preamble information is processed, in order to assist in the migration of subforms.

The following sections elaborate on the aforementioned aspects of the import capability.

Form Objects

LiveCycle Designer supports the same basic form objects as Output Designer: static content such as
text, lines, boxes, circles, images, and barcodes; dynamic content such as text fields, radio-buttons,
checkboxes, barcode fields, and image fields. Beyond these individual objects, there are equivalent
features for groups, subforms, and other equivalent capabilities that are discussed in the following
sections.

In general, LiveCycle Designer provides a richer set of form objects, with a wider range of properties
and features, than Output Designer. However, the remainder of this section describes any notable
issues with importing individual form objects from Output Designer forms into LiveCycle Designer.

Global Fields

It is not uncommon for Output Designer forms to have more than one field with the same name,
possibly in different subforms, where some (but not all) of these fields are configured as global fields.
Global fields in LiveCycle forms behave differently than global fields in an Output Designer form, as
described in the section called “Global Fields and Global Data”. It is not permissible for a LiveCycle
form to have multiple same-named fields with varying global/non-global states within the same form
– the fields must either be all global or non-global.

Version 3 – April 2012 Page 21 of 58

Tables

LiveCycle Designer does provide a capability to create table objects. However, table objects within an
Output Designer form are not migrated to LiveCycle table objects. Instead, the fields that comprise
the cells of the imported table are migrated to individual fields, and the graphical aspects of the
imported table are migrated to a series of lines and boxes.

For more information on tables in LiveCycle forms, see the section called “Tables”.

Graphics Formats

LiveCycle Designer will import logo objects (images) represented in the most common formats (e.g.
.tiff, .bmp, .gif, .png, .eps, .jpg), but it does not support all Output Designer image formats (e.g.
.lgo, .pcx, .hgl).

Grouped Objects

When importing an Output Designer form into LiveCycle Designer, any form objects that are grouped
together are migrated to subforms in the resulting LiveCycle form. These subforms are given the
same position, dimension, and name, as the corresponding groups from the Output Designer form.

In both Output Designer and LiveCycle Designer, grouping form objects together is often performed
simply to make operating on these objects more convenient. LiveCycle Designer does have the
notion of a group, distinct from the notion of a subform. Grouping a number of objects together in
LiveCycle Designer does not automatically create a new subform, although both Output Designer
and LiveCycle Designer permit you to select multiple objects and request that a new subform be
created to enclose the select objects.

Regardless, the import processing of Output Designer forms considers groups to be significant form
features, and migrates any groups to subforms in the resulting LiveCycle form.

Foundation Pages

Dynamic forms created with Output Designer require at least one full-sized page to be defined,
known as a foundation page or JFMain page. Subforms within an Output Designer form can also be
associated with specific foundation pages. When Central generates output, it instantiates as many
foundation pages as required to hold the range and variety of subforms.

Foundation pages also determine physical page attributes, such as page size and orientation.
Common document features, such as page header and footer content, are often designed onto
foundation pages rather than subforms.

Each foundation page of an Output Designer form is imported into LiveCycle Designer as a master
page in the resulting LiveCycle form. Any associations between subforms and foundation pages are
also migrated so that the subforms within the resulting LiveCycle form will be associated with the
corresponding master pages.

Fonts

LiveCycle Designer will detect the fonts used in Output Designer forms, and can honor any font
mapping defined for Output Designer with a jfontmap.ini file.

Version 3 – April 2012 Page 22 of 58

When importing an Output Designer form, for each font encountered that is not present on your
system and is not already mapped via jfontmap.ini, LiveCycle Designer will present you with a
dialog where you may select a substitute font. For a more detailed discussion of fonts and font
mapping with LiveCycle forms, see the section called “Font Handling”.

Output Designer, regardless of which presentment targets a particular form was designed for,
provides a special font setting that can be used with any text field: the *NOPRINT* font setting. Any
field that uses the *NOPRINT* font setting will, as the name implies, not print the contents of the field.
LiveCycle Designer does not provide a *NOPRINT* font setting, but it does provide several different
ways to conceal content. For instance, a field may be defined to only appear on-screen, only when
printed, or be defined as hidden entirely (though the field remains visible within LiveCycle Designer it
will not be visible on any generated output). This property of a LiveCycle form object is known as the
presence property. Any fields within an Output Designer form that use a *NOPRINT* font setting are
imported as fields with the presence property set to hidden.

Subforms

Dynamic forms created with Output Designer may contain subforms that represent header, trailer, or
detail types of subform content.

Subforms are instantiated and arranged by Central according to rules and relationships defined
within Output Designer, such as indicating the relationship between the header, detail subforms, and
trailer, representing tabular information within a form, or a specific sequencing of subforms specified
by indicating that each subform has a parent subform that must appear before it.

LiveCycle forms have equivalent subform capabilities, but they are not expressed in the same way as
subforms created with Output Designer. For instance, within Central forms, subforms can be
specified to occur in a specific sequence, but not by indicating that the preceding subform is a parent
of, or encloses, the current subform – a parent/child relationship between subforms in LiveCycle
forms expresses that one subform is actually contained within another subform. Unlike Central forms,
LiveCycle forms may have subforms actually nested within other subforms. Therefore, when
importing a Central form, LiveCycle Designer attempts to migrate the subform characteristics of the
original form to an equivalent LiveCycle subform definition.

One example of an Output Designer subform characteristic for which there is no LiveCycle Designer
equivalent, is the capability to declare that a subform must reserve an amount of space on the
foundation page large enough to encompass itself and other subforms, plus an additional arbitrary
amount of space. This mechanism permits a form to ensure that a subform will not be separated by a
page break from a specified range of following subforms. LiveCycle forms provide equivalent
functionality by different means, such as specifying that a subform must be kept on the same page as
the following subform, or that a subform cannot be split across pages.

Preamble Handling

In both Output Designer and Central, dynamic subform behavior is largely dependent upon the
instructions within a form's preamble. Output Designer automatically creates a number of different
custom variables, containing preamble instructions, derived from the subforms designed within the
form. These default preamble instructions, given that they are generated by Output Designer itself,
are interpreted during the import to LiveCycle Designer. By considering the preamble, LiveCycle
Designer will attempt to replicate the behaviors of the original subforms, thus producing a form that
will generate either the same, or similar, output.

Version 3 – April 2012 Page 23 of 58

Beyond the automatically generated preamble, Output Designer also permits the creation of
additional preamble instructions that may augment or override the default preamble. Preambles can
also be specified as part of a Central job definition, or from within the data associated with a Central
job. The ability of LiveCycle Designer to leverage preamble instructions decreases with custom
preambles, and clearly preamble information that may have accompanied a Central job or data
stream is unavailable to the LiveCycle Designer import process.

Working with Imported Forms

As described earlier, the LiveCycle Designer import process operates according to a number of
assumptions. The import process strives to produce a form that will generate a document very similar
to the original Output Designer form.

Consider the following two examples intended to illustrate what is meant by unstructured XML data,
versus structured XML data:

Example of unstructured XML data

<data>
 <vendor_code>1001</vendor_code>
 <vendor_name>A1 Business Products</vendor_name>
 <vendor_address>234 Second St., Anytown, ST</vendor_address>
 <billto_name>John Doe</billto_name>
 <billto_address>15 Fourth St., Anytown, ST<billto_address>
</data>

Example of structured XML data

<data>
 <vendor>
 <code>1001</code>
 <name>A1 Business Products</name>
 <address>234 Second St., Anytown, ST</address>
 </vendor>
 <billto>
 <name>John Doe</name>
 <address>15 Fourth St., Anytown, ST<address>
 </billto>
</data>

The example unstructured XML data represents data in a manner very similar to the Central field-
nominated data format, with uniquely named data items. Such an equivalent field-nominated data
file might look like the following:

Example field-nominated data

^field vendor_code
1001
^field vendor_name
A1 Business Products
^field vendor_address
234 Second St.
Anytown, ST

In contrast, the structured XML is able to reuse the names of data items that represent the same type
of information (e.g. a name, an address) and use structural information (the vendor and billto
elements) to distinguish between information about the vendor versus the buyer.

One consequence of import process goal is that the import process creates a hierarchy of subforms
intended to replicate the behavior of the original form. This hierarchy does assume that incoming

Version 3 – April 2012 Page 24 of 58

data stream will also be structured in a similar fashion. If so, then the incoming data should merge
with the form based on the field names. If the incoming data stream is unstructured or is structured
but in a different way than the form, then the easiest way to address this is to explicitly bind your
fields to the incoming data by setting the field’s data binding property to the appropriate incoming
XML element.

The “import fields only” checkbox

Under previous versions of LiveCycle Designer, when you imported an Output Designer form,
LiveCycle Designer went to great lengths to make sure that the form continued to work with an
unstructured XML stream by adding extra subforms and extra data transformation instructions into
the imported form. Experience has indicated however that for most people who convert forms from
Output Designer to LiveCycle Designer this extra effort was unnecessary. Since the incoming data
stream had to be converted from field-nominated to XML, converting it to a structured XML that
mimicked the form’s structure was no more trouble than creating unstructured XML. Converting to a
structured XML however meant that the extra subforms and extra transformation instructions had to
be removed from the form manually using the XML source view. This was not desirable so the import
process was modified to assume that the incoming data stream was being remodeled into structured
XML.

This change in behavior may prove disruptive for someone in the middle of converting a large
number of forms, so a mechanism was included to tell LiveCycle Designer to perform the conversion
in the same way as older versions of LiveCycle Designer. This is the “import fields only” checkbox on
the File Import Options dialog. If this field is checked then the import process assumes that the
incoming XML is structured or that the user will explicitly bind the fields. This is the default setting
and is the recommended setting. If this field is unchecked, then the import process functions as it did
in previous versions. It adds in extra subforms and extra data transformation instructions.

Basic Forms

Output Designer and Central process two largely distinct types of forms: static forms, and dynamic
forms.

Static forms generally aren't comprised of many subforms – all of the fields and other form objects
are placed in specific locations across as many pages as required to hold the potential maximum
range of data. Regardless of how much, or how little, data is combined with the form, the form will
look largely the same. In this way, static forms are equivalent to manual paper forms.

Dynamic forms are all about supporting a range of potential document content and layout. During
the process of designing a dynamic form, the form is decomposed into its component regions of
content: the subforms. Depending on the requirements of the data, a unique document will be
generated that satisfies the requirements of that particular range of data. Because the content within
a dynamic form is elastic, and the number and types of pages are not static, Output Designer requires
that the underlying physical page requirements of the form be determined via a mechanism known
as foundation pages (also known as master pages in LiveCycle Designer).

LiveCycle forms do not significantly differentiate between static and dynamic forms. All forms require
master pages, and all forms make use of subforms. What determines whether a LiveCycle form
behaves like a static form, or a dynamic form, is how the individual subforms are defined – whether
the subforms are located at fixed positions and not configured to conditionally appear based on a
relationship with a data source, or whether the subforms are configured to appear based on the

Version 3 – April 2012 Page 25 of 58

requirements of the data and flow into a location on a page determined at the time of output
generation.

LiveCycle does expose the notion of a static versus dynamic form in relationship to creating PDF
forms for Adobe Acrobat. When designing a form for use in Adobe Acrobat, LiveCycle Designer
permits you to state whether the form should behave as a static or dynamic form. However, when
designing forms for use with LiveCycle Output, the distinction between static and dynamic forms is
largely irrelevant.

Thankfully, the lack of this distinction does not raise the level of effort required to design simpler
forms in LiveCycle Designer. Simple forms can be designed in LiveCycle Designer without being
encumbered by features required only when designing more advanced, more dynamic, forms.

Multi-Part Forms

Output Designer provides a capability to design forms that replicate multi-part forms that are printed
in impact printers or filled manually. The form has a number of layers, or parts, that may each display
or hide a portion of the data. There is one set of data, and that data appears in varying degrees, on all
parts of the form.

By default, a new form created with Output Designer, is a single-part form. A form may be defined as
either a multi-part form, or multi-part sorted form, by selecting Format > Template Design >
Template Properties, and choosing the desired option in the Collate area of the dialog box.

LiveCycle does not provide a multi-part form capability equivalent to the behavior of Central.
However, it is certainly possible to create a LiveCycle form that has multiple pages, and utilizes data
binding or scripting to replicate the data across the pages.

Dynamic Forms

As described in the section called “Basic Forms”, LiveCycle Designer does not significantly distinguish
between static forms, and dynamic forms. Hence, while the form capabilities described in the
following sections are enclosed within a major section entitled "Dynamic Forms", these capabilities
can also be utilized in simpler forms that don't appear to exhibit the characteristics commonly
associated with dynamic forms.

Master Pages

Master pages are a feature of LiveCycle forms similar to foundation pages in Output Designer (as
briefly described in the section called “Foundation Pages”).

In Output Designer, foundation pages are only necessary when working with dynamic forms, and
they can only contain static content (no fields). In LiveCycle Designer, all forms have at least one
master page, and master pages are not significantly restricted in the type of objects they may
contain. Master pages may contain fields, and even subforms. However, this capability for placing
objects on master pages should not be abused; even when designing simple static forms, resist the
temptation to design the form within master pages, and only use master pages for information
commonly found in document headers and footers.

Version 3 – April 2012 Page 26 of 58

Common form requirements such as a page header or footer that contains calculated data (e.g.
today's date, page number) or information retrieved from a data source are satisfied by placing fields
on master pages. For more information on page numbering, see the section called “Page Counts”.

Similar to foundation pages, master pages also determine physical page attributes, such as page size
and orientation.

The content of a LiveCycle form is placed onto the master page at a position, and within a region,
defined by an object known as a content area. By varying the position and size of a content area, the
content of the form may be moved and constrained. Master pages may have more than one content
area, allowing the content of a form to flow into more than one region on the page, similar to multi-
column layouts.

Master pages may be defined as automatically repeating in order to completely enclose all of the
form content for a given document, or may be defined to occur a specific number of times.
Depending on this definition, when a master page is full, it will automatically repeat, or the remaining
form content will resume on the next available master page (assuming multiple master pages were
designed). Form objects may be split across page boundaries, or may be configured as unbreakable.

Master pages may be grouped into a series of master pages with a particular ordering, known as a
master page set. These sets can also be grouped.

The range of capabilities present in LiveCycle master pages is significantly greater than foundation
pages in Output Designer and Central. For more information on master pages, and how to use them,
consult the LiveCycle Designer product documentation.

Preambles

As described in the section called “Preamble Handling”, both Output Designer and Central, achieve
dynamic subform behavior by leveraging the instructions within a form's preamble. Output Designer
automatically creates a number of different custom variables, containing preamble instructions,
derived from the subforms designed within the form.

LiveCycle forms do not provide a mechanism similar to preambles. Instead, LiveCycle forms provide a
rich set of capabilities for achieving the same goals. The following list summarizes some of the
common tasks performed by preambles, and the equivalent mechanism in LiveCycle forms:

• Preambles detect references to fields that are not present in the current subform and switch
to the appropriate subform containing the requested field. This behavior is a consequence of
the limitation inherent to Central forms where only one subform is active at any given
moment and data must fully populate a subform before moving to the next subform.
LiveCycle forms do not have these limitations, and also benefit from robust data-binding
mechanisms. LiveCycle forms are capable of automatically detecting when a different
subform must be instantiated, or a new instance of a subform, without restricting access to
other parts of the form.

• Preambles express how newly instantiated subforms are positioned relative to previous
subforms. LiveCycle forms permit subforms to be positioned in a specific location within an
enclosing subform, or arranged in sequence, and flowing in a specific direction.

Version 3 – April 2012 Page 27 of 58

• Preambles describe how much space is potentially required on the current page, or must be
reserved, for a subform and its potential subsequent subforms. LiveCycle forms provide a rich
set of properties on subforms that determine whether a subform may be split across a page
boundary, or whether it must be kept on the same page as the subsequent subform.

• Preambles determine the header, detail, and footer behaviors that are very common in
forms. LiveCycle forms permit subforms to be nominated as leading or trailing a detail
subform (thus the LiveCycle terminology leader and trailer instead of header and footer). In
addition, LiveCycle forms provide a powerful table capability where subforms can be
arranged in a tabular layout.

• Preambles provide a mechanism similar to scripting, with the ability to perform conditional
logic, test conditions, and format data. LiveCycle forms expose a rich set of properties and
events on form objects that can be augmented with scripts defined in either the JavaScript
or FormCalc language.

Expandable Objects

Forms created with Output Designer may leverage a capability where form fields may expand
vertically to accommodate a range of data that would not otherwise fit within the field. By specifying
in Output Designer that a field can expand, any data that would otherwise overflow the field is
continued onto as many instances of a similar field in another subform as required. These additional
subforms typically appear below the original subform containing the original expandable field
enclosing the first line of data. A common use case for this capability is where a particular column
within a table may contain free-form text associated with a line-item, or row, of the table. All of the
descriptive text would appear within a visually taller table cell contained within the row, and the
overall height of the row expands such that successive rows of content are properly located below.

The Output Designer approach works by repeating a particular subform for each line of content that
overflows the original expandable field. However, while this approach works for the above simple
and common scenario, it has two notable limitations. First, only one field representing a column
within a subform representing a row can be configured as an expandable field, and the first field that
begins to overflow produces the additional subforms. Once these additional subforms, representing
the overflow area, are produced, Central’s processing is unable to return to the original subform to
handle additional expandable fields. Further, any additional data intended for the original subform
that occurred after the overflowing data will be lost. Second, expandable fields can only expand
vertically. There is no capability for fields to expand horizontally.

LiveCycle forms permit objects, such as fields and subforms, to be defined as expandable in either a
vertical or horizontal dimension. LiveCycle Designer provides, via the Layout palette, the ability to
specify the minimum size of an object and whether the object should expand vertically or
horizontally to accommodate its content, and in which directions the object should expand.

This ability for objects on LiveCycle forms to expand either vertically or horizontally is a first-class
feature of the objects themselves; it does not require, unlike Output Designer, that the additional
content be accommodated by fields and subforms designed to capture the overflowed content; and
therefore, LiveCycle forms do not exhibit the limitations or side-effects of Central forms described
above.

As an expandable object on a LiveCycle form increases in size, the decorative attributes of the object
(such as the border) will also automatically adjust. Depending on whether the object has been

Version 3 – April 2012 Page 28 of 58

anchored to a particular location on the page, or whether the object floats alongside the other
objects in the form, the object's expansion may overlap other objects or cause the layout of
subsequent objects to adjust accordingly. Eventually, an object may grow so large that it may need to
be split across pages, and LiveCycle Designer allows the object to be configured so that its border will
appear open or closed on either side of the page break. A subform may also be configured to permit,
or disallow, the splitting of its content across pages.

Field Overflow

Related to the previous discussion of expandable objects (see the section called “Expandable
Objects”), is the topic of how oversized content is handled within fields defined with a fixed size.

Consider the scenario where a single-line field, such as a field intended to represent a telephone
number, is configured to hold only seven digits. When such a field is given more than seven digits of
data, such as a telephone number that includes an area or country code, an overflow condition
occurs.

In Central, by default, special handling is provided for single-line fields such that data is permitted to
extend beyond the outer boundary of the field. In the case of the too-long telephone number, all of
the digits would appear to extend beyond the edge of the field. In addition to this default behavior
for single-line fields, any field object in a Central form may be configured, via preamble processing,
with instructions on how to respond to an overflow event. Multiple-line fields may also take
advantage of preamble handling of overflow conditions, but by default multiple-line fields will wrap
content onto successive lines within the field until the field is filled with content. The handling of any
remaining content is dependent upon the current reformat mode of Central (consult the Central
documentation for more information on reformat processing).

LiveCycle forms do not exhibit different behavior for single-line fields versus multiple-line fields,
except for the expected behavior that multiple-line fields will automatically wrap content onto
successive lines. Fields are either designed with a fixed width and height, or may be designed to
expand in width or height. A field with a fixed dimension will eventually truncate any content that
does not fit, whereas an expanding field will extend to accommodate the content. Fields in LiveCycle
forms do not provide a mechanism similar to the preamble-based overflow handling in forms created
with Output Designer.

LiveCycle Designer also provides a type of field, the image field, intended to present an image rather
than textual content. Image fields can be configured to scale the image to fit the dimensions of the
field (optionally preserving the aspect ration of the image), or render the image according to its
intrinsic dimensions.

Tables

Tabular layout of data is a very common feature of forms, and both Output Designer and LiveCycle
Designer provide features for designing tables. However, often tabular layout is accomplished in
Output Designer and Central by using a series of subforms, rather than a table object, often because
subforms provide additional features (such as pagination) and allow the content of a table to vary by
selecting from a variety of subforms.

Recognizing that tabular layout, for all but the simplest of forms, often requires functionality
commonly associated with subforms, LiveCycle Designer exclusively utilizes subforms to produce
tables, yet provides a rich user-interface suitable for both simple tables and complex tabular layout.

Version 3 – April 2012 Page 29 of 58

Tables in LiveCycle forms provide the common features of headers and footers, with control over the
repeating of headers and footers across page breaks. The content of a table cell can be any form
object, and may be bound to a data source with a varying number of rows dependent upon the
range of data. Additional features of LiveCycle tables include:

• The number of rows can be fixed, or bound to a range of data.

• The content of a table cell can be any form object, including a subform, or a nested table.

• The table content can be subdivided into sections with independent headers, footers, etc.

• The rows or columns of the table can be configured to be automatically equally sized.

• The layout of a table can be configured to automatically break based upon a scripted
condition.

For more information on designing tables in LiveCycle Designer, consult the LiveCycle Designer
product documentation.

Floating Fields

Output Designer provides a feature known as boilerplate fields that permits the content of an
otherwise static region of text to contain regions of variable content that will be populated from data,
and the layout of the surrounding content automatically adjusts to accommodate the variable
content.

LiveCycle forms provide an equivalent mechanism, known as floating fields, where a field can be
inserted within the content of a region of text on a form, the field can be populated with data when
the document is generated, and the layout of the surrounding text is adjusted. The underlying
mechanism that LiveCycle forms use to accomplish this is to embed a specific unit of XML markup
within the text content of the form object. This mechanism can also be used to reference and
substitute values into the data that will be combined with a form (see also the section called
“Embedded Field References”).

Calculations

LiveCycle Designer is a full-featured form design application that can be used to create interactive
forms, forms designed solely for generating output documents, or any combination in between.
Hence, features commonly associated with interactive forms, such as scripting and fields that contain
calculated values, are available for use within document generation scenarios. When a form is
processed, along with any associated data, any dependent scripting and calculations contained
within the form are automatically executed.

In comparison, Central field-nominated data files and form preambles may use a simple command
language with conditionals and common operations known as calculation expressions. These
calculation expressions are very useful, but they are not a complete scripting solution. The LiveCycle
approach leverages the existing scripting capabilities of LiveCycle forms, using either JavaScript or
FormCalc scripting languages. It is worth noting that a set of functions is provided within the
LiveCycle FormCalc scripting language that are very similar to the functions available to calculation
expressions.

Version 3 – April 2012 Page 30 of 58

Fragments

The field-nominated format used by Central provides mechanisms for referencing multiple subforms
from within a single data-stream. In this way, a document can be constructed by assembling parts of
different forms together. The field-nominated ^subform command permits the data file to call out to
another subform within either the current, or a different, form file.

LiveCycle provides a similar mechanism known as fragments. Where Central provided this
functionality by using a ^subform command from within a field-nominated data file, LiveCycle
provides the ability to create, manage, and reference reusable fragments from within the rich user-
interface of LiveCycle Designer.

With LiveCycle Designer, any collection of form objects, including script objects, can be turned into a
fragment, stored in a library of fragments or within a saved form file, and recalled from another form.
Fragment libraries are storage locations, either on the local system or a shared network location,
where fragments are stored. Multiple libraries can be created to aid in the organization, sharing, and
reuse of fragments.

The LiveCycle Designer user-interface for fragment libraries is a palette equivalent to the Object
Library palette. Fragments are available from the fragment library palette to be inserted into the
current form.

Inserting a fragment into a form provides the same visual feedback and appearance as if the
individual objects had been manually inserted into the form. However, when inserting a fragment, a
reference to the storage location of the fragment within the fragment library is retained within the
form. In this way, any changes made to a fragment will be automatically reflected when the
referencing form is next opened in LiveCycle Designer, or processed by the LiveCycle Output server
components.

Fragments in a form can also be disassociated from their original definition within a fragment library,
allowing a fragment to be effectively copied into a form and isolated from any future changes that
might be made to the original fragment in the library.

As briefly mentioned above, a fragment can be created within a form and simply stored as part of a
form, rather than stored within a fragment library. While such a fragment will not be available from
within the fragment library palette, LiveCycle Designer also provides a mechanism to insert
fragments located within other XDP form files. This capability is conceptually very similar to the
Central ^subform command that directly references a subform stored within another form file.

For more information on creating and using fragments, consult the LiveCycle Designer product
documentation.

Form Variables

Forms created with Output Designer may have additional name/value pairs of information stored
within the form. Output Designer facilitates the creation of these name/value pairs as Custom
Properties, whereas Print Agent exposes them via the DocVar dictionary.

LiveCycle Designer also permits the creation of custom variables, associated with a form, by using the
Variables tab of the Form Properties dialog. These variables can be accessed by referencing the
named variable from within any scripts.

Version 3 – April 2012 Page 31 of 58

Page Counts

A common requirement of multi-page documents is the appearance of a running page count, along
with the total page count, on the header or footer of a document. Often this will appear as "Page n of
m" where n is the current page number and m is the total page count.

Obtaining the current page number is straightforward in Central, such as using the ^$page or \$page
field-nominated commands. Determining the total number of pages is more challenging, because
the document must be first generated in order to determine the total number of pages, though this
process can be automated with Central's job management database. With Central, the need to
predetermine the total number of pages is due to the way that documents are constructed. In order
to print a "Page n of m" on the first page of a document, the value of m must have already been
determined because by the time the end of the document is encountered, it is too late to go back to
the previous pages and subforms to populate the areas referencing the total number of pages.

LiveCycle takes the approach of constructing an entire document as one whole entity before
committing the generated document to its output format or device. In this way, scripting and
calculations have an opportunity to execute in the context of a fully constructed document, and may
easily query the document for its total number of pages. No multi-step processing is required to
determine the total number of pages.

Individual master pages in a LiveCycle form may indicate whether the page should be numbered, and
contribute to the overall page count, or whether the master page should not be considered a
numbered page. This is useful for scenarios where one or more pages, or possibly the back side of
pages in a duplex document, are not intended to have their own page number. A master page may
also be configured to start a new page count, or continue from an existing page count.

LiveCycle forms also distinguish between the total count of pages (based on the accumulation of
numbered master pages) and the total number of surfaces representing the actual number of
physical page surfaces generated.

LiveCycle forms retrieve information about the current page, the total number of pages, and the total
number of surfaces by calling a built-in LiveCycle method as the calculated value for a field, or from a
script expression. For instance, in order to obtain the total number of pages or surfaces, a script
would call the xfa.layout.pageCount() method or the xfa.layout.sheetCount() method
respectively. Obtaining the current numbered page or surface is handled by calling the
xfa.layout.page(this) or xfa.layout.sheet(this) method respectively. These two methods
receive a reference of the calling object (this) to determine on which page or surface the calling
object appears. Hence, it is also possible to determine on which page or surface a different object
appears by passing in a reference to that object when calling these methods. This is useful for
producing cross-references within a document. Note that when calling these methods, the first page
is (by default) numbered 1 (one) whereas the first surface is numbered 0 (zero).

To ease the creation of "Page n of m" areas on a form, LiveCycle Designer provides a "Page n of m"
object in the Object Library. A similar "Sheet n of m" object is also available from the Object Library
that produces surface count information instead of numbered page count information.

LiveCycle forms also provides page and sheet values in the context of a document batch allowing for
page counts to be determined outside of the context of a document and in the context of a complete
batch. Some Central solutions mark document batches for use with enveloping / insertion machines.
This is typically via a 2 pass process, capturing page information via preamble TRACE command in the

Version 3 – April 2012 Page 32 of 58

first formatting pass, running a custom program to manipulate the batch data file based on the
captured TRACE information and then doing a final format with enveloping / insertion marks on each
page. These batch level values can be used to script enveloping / insertion solutions without the
need for 2 formatting passes or a custom program. For more information on accessing these values
see the LiveCycle Designer ES Scripting Reference.

Locale Settings

A document may need to be used within a particular environment with its own language
requirements, conventions for representing dates, times, numbers, and monetary values.
International standards exist for categorizing the world's various collections of geopolitical and
linguistic expectations around representing and interpreting such data content; commonly these
individual collections are known as locales.

LiveCycle forms leverage these standards and provide an easy way to build forms, and generate
documents, that can adapt to a particular locale, or present information according to the
expectations of multiple locales within the same document. For example, a document could correctly
present its dates and numbers regardless of whether the document was generated in an English or
French locale, or an American or British locale. A document might need to present its information
simultaneously in two or more languages, or ensure that its content is always consistently presented
according to its country and language of origin, regardless of the country where the document
generation or viewing will occur. All of this is possible with the locale functionality of LiveCycle forms,
and LiveCycle forms also permit their locale information to be customized for the creation of new
locales, or modification of standard locales.

It is important to note that the XML standard provides a conceptually similar mechanism, known as
xml:lang, for declaring that the content of a particular XML element is expressed in a particular
language. This is similar, but distinct from LiveCycle's use of locale information, and LiveCycle forms
do not process any xml:lang attribute encountered when processing an XML data source.

Within a LiveCycle form, most objects that have a capability to contain or format data content also
expose a locale property that can be adjusted to one of the available locale definitions. The form
itself also has its own overall default locale setting, which can be selected from the LiveCycle
Designer Form Properties dialog. Because the content of a LiveCycle form can be comprised of a
hierarchy of objects contained within multiple nested subforms, each object defaults to inheriting
the locale setting of is enclosing subform, or the overall default locale for the form. An object, or the
form itself, may also choose to not constrain itself to a particular locale, and instead may choose to
operate according to the locale of the system or application environment.

Central provides configuration settings for adjusting common locale features, including the grouping
separator (thousands separator) or decimal point for numeric values, currency symbol, and calendar
content (e.g. day names, month names). Although LiveCycle leverages a built-in standards-based
configuration for a wide variety of locales, it is possible to add your own locale information, or adjust
an existing locale. Custom or modified locale information can be incorporated within the XML
definition of a form itself, according to an XML markup language that is documented as part of the
Adobe XML Forms Architecture Specification.

Version 3 – April 2012 Page 33 of 58

Here is an excerpt from the locale definitions automatically embedded by LiveCycle Designer within a
form designed for an American English locale, showing the definitions for the abbreviated day
names, numeric punctuation, and currency symbols:

Excerpt of form locale information:

</calendarSymbols>
 <dayNames abbr="1">
 <day>Sun</day>
 <day>Mon</day>
 <day>Tue</day>
 <day>Wed</day>
 <day>Thu</day>
 <day>Fri</day>
 <day>Sat</day>
 </dayNames>
</calendarSymbols>
<numberSymbols>
 <numberSymbol name="decimal">.</numberSymbol>
 <numberSymbol name="grouping">,</numberSymbol>
 <numberSymbol name="percent">%</numberSymbol>
 <numberSymbol name="minus">-</numberSymbol>
 <numberSymbol name="zero">0</numberSymbol>
</numberSymbols>
<currencySymbols>
 <currencySymbol name="symbol">$</currencySymbol>
 <currencySymbol name="isoname">USD</currencySymbol>
 <currencySymbol name="decimal">.</currencySymbol>
</currencySymbols>

Version 3 – April 2012 Page 34 of 58

5. Data

Data Formats

Central is a product whose evolution began well before the World Wide Web Consortium (W3C)
and the common use of XML as a data format. This history is reflected in the range of non-XML data
formats that Central is capable of consuming, including comma-delimited and fixed-length record
formats. However, the preferred, and most widely used, Central data format is known as the field-
nominated format, and often referenced by its commonly used file extension as the DAT format.

In recent releases Central has provided support for XML data, by transforming XML into field-
nominated format either automatically or explicitly via the XML-Import Agent. If you have prior
experience using XML with Central, many aspects of that experience will apply to building solutions
with LiveCycle. XML is the only data format support by LiveCycle Output, though any number of
different XML-based data formats can be supported.

This section will explore what you need to know when moving from the range of data formats
supported by Central, including the XML supported by Central, to the XML data consumed by
LiveCycle Output.

Central Transformation Agent

Central provides a Transformation Agent, and Visual Transformation Editor, that facilitate the
transformation of one data format into another, including data formats that may not be supported by
Central.

LiveCycle Output exclusively consumes XML data, and does not provide an equivalent capability to
transform non-XML data. LiveCycle Output does provide support for leveraging XML transformations
expressed in the standard XSL Transformations (XSLT) language.

Moving to XML Data

It is valuable to first understand the fundamental similarities and differences between how Central
consumes field-nominated data, compared to the XML data consumed by LiveCycle Output.

Both formats are textual, and annotate the data with markup to, at a minimum, provide each unit of
data with a name that aids the process of merging the data into a form. A simple example of data in
field-nominated format, and equivalent example1 in XML format, follows:

Very simple field-nominated data:

^field vendor_code
1001
^field vendor_name
A1 Business Products
^field vendor_address
234 Second St.
Anytown, ST

Version 3 – April 2012 Page 35 of 58

Very simple XML data:

<vendor_code>1001</vendor_code>
<vendor_name>A1 Business Products</vendor_name>
<vendor_address>234 Second St., Anytown, ST</vendor_address>

Beyond the syntactical differences of expressing markup in field-nominated format using the caret (^)
symbol versus angle-brackets in XML, the two formats differ significantly on the meaning of their
markup. The field-nominated statement ^field vendor_code is actually a command instructing
Central to apply the following data to a field known by the specified name of vendor_code. In
contrast, the XML markup <vendor_code> only states that the following data shall be known as
vendor_code.

Field-nominated format is actually a command language, not a data description language such as
XML. The field-nominated format provides a range of instructions intended to be consumed by
individual Central Agent processing modules. This command language typically encloses data
intended to be merged with a form. This is more apparent when considering field-nominated
statements such as ^page or ^eject that instruct Central to advance or eject a page, and clearly have
nothing to do with describing data. In contrast, the XML data consumed by LiveCycle Output is
almost exclusively constrained to the task of adequately describing the data, often according to a
custom schema expressed in XML Schema format.

The capability to affect the document construction and rendering process at a low-level, with
commands like ^page, undoubtedly provide the creator of field-nominated data with a significant
degree of intervention, from within the data, over the generated document. However, the use of such
commands does increase the degree of coupling between a set of data and a form. It can also
become a challenge in solutions where the data is provided by a third-party and there is concern over
the fact that the data is driving the document generation process.

There is no equivalent, in the XML data consumed by LiveCycle Output, to the majority of field-
nominated commands that are focused on affecting the document construction and rendering. For a
discussion of field-nominated commands, and equivalent functionality in LiveCycle forms, see
Chapter 9, “Field-Nominated Commands”.

DAT is flat, XML is structured

The Field-nominated format expresses data in a linear manner, with limited mechanisms to describe
structure or relationships that might exist within the data. As a consequence, in many cases the order
of the statements within field-nominated data is significant, and different results may be produced
depending on the order.

XML data is inherently hierarchical, and each unit of data, is enclosed within tags that indicate the
beginning, and the end, of each data item as an XML element. Data may also be expressed as XML
attributes . The structure, relationships, and ordering of data, implied by XML data is often explicitly
defined by an accompanying schema. While a schema can make assertions about the relative
ordering of the XML data elements, such order is often insignificant. Consider the following
reworking of the XML example introduced in the previous section:

Version 3 – April 2012 Page 36 of 58

Structured XML:

<vendor>
 <code>1001</code>
 <name>A1 Business Products</name>
 <address>234 Second St., Anytown, ST</address>
</vendor>
<recipient>
 <address>678 Fourth Ave., Anytown, ST</address>
 <name>Tony Blue</name>
</recipient>

In the above example, element names such as name, and address appear in two different contexts,
describing the name and address of the vendor and recipient. It is the presence of the enclosing
vendor and recipient tags that allow the vendor's name and address to ultimately be distinguished
from the recipient's name and address. An equivalent example in field-nominated format would likely
employ ^field commands, and possibly ^group commands, with the fully-qualified names
vendor_name and recipient_name in order to adequately differentiate between the data items.

It may appear at first that the common practice of repeating element names in different contexts
should be discouraged, that it creates ambiguity. One common reason for this apparent re-use of
element names often stems from the use of a schema where the benefit is the ability to define a data
item name or address once, and then further define the contexts in which these data items can
appear. As described before, it is the surrounding context within the XML that disambiguates these
data items. XML data, when used in concert with LiveCycle Output's XML-based forms, utilizes these
matching hierarchies of structural information, along with explicitly defined data-binding instructions
within the form, to successfully merge the data into the form.

The sequence of name and address elements varies between the vendor and recipient to illustrate
that the ordering of this information is not significant for the correct processing of this information.

XML Data is Case-Sensitive

One significant difference between using field-nominated data with Central and using XML data with
LiveCycle forms is case-sensitivity. Central data formats and forms are not case-sensitive, whereas
XML data and LiveCycle forms are case-sensitive. Case-sensitivity is simply the accepted practice with
XML technologies.

Consider that Central would consider the following two field-nominated data files to be equivalent
and process them in the same way:

Lowercase field-nominated data

^field vendor_code
1001
^field vendor_name
A1 Business Products
^field vendor_address
234 Second St.
Anytown, ST

Version 3 – April 2012 Page 37 of 58

Uppercase field-nominated data

^FIELD VENDOR_CODE
1001
^FIELD VENDOR_NAME
A1 Business Products
^FIELD VENDOR_ADDRESS
234 Second St.
Anytown, ST

In contrast, depending on whether a LiveCycle form was designed with lowercase field names or
uppercase field names, only one of the following two XML data files with the matching letter-case
would properly bind to the form.

Lowercase XML markup

<vendor>
 <code>1001</code>
 <name>A1 Business Products</name>
 <address>234 Second St., Anytown, ST</address>
</vendor>

Uppercase XML markup

<VENDOR>
 <CODE>1001</CODE>
 <NAME>A1 Business Products</NAME>
 <ADDRESS>234 Second St., Anytown, ST</ADDRESS>
</VENDOR>

The best way to avoid problems with the case-sensitive nature of XML and LiveCycle forms is to
establish whether your XML data, schema, and forms will use lowercase or uppercase naming, and
consistently maintain that practice.

Formatting Rich-Text Data

Field-nominated data can include commands that affect the formatting of the data within a form
field. These commands, known as Inline Text Control commands, provide capabilities such as
varying the appearance of the font, defining and advancing to tab stops, and more. Data
incorporating such formatting commands, or markup, is commonly called rich-text.

Rich-text formatting with Inline Text commands

^inline on
^group order
^field instructions
Deliver the order to the \b.back\b0. door!

Within the Central support for XML data, rich-text is not expressed using Inline Text Control
commands. Instead, rich-text is expressed with a subset of XHTML markup.

Version 3 – April 2012 Page 38 of 58

Rich-text formatting with Central XHTML

<order>
 <instructions
 xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
 xfa:contentType="text/html">
 <p>Deliver the order to the back door!</p>
 </instructions>
</order>

LiveCycle Output supports an extended range of XHTML-based rich-text markup, including support
for a subset of CSS style attributes.

Rich-text formatting with LiveCycle Output XHTML

<order>
 <instructions>
 <body xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
 xmlns="http://www.w3.org/1999/xhtml">
 <p>Deliver the order to the back door!</p>
 </body>
 </instructions>
</order>

Embedded Field References

Building on the earlier discussions of floating fields and rich-text data (see the section called “Floating
Fields” and the section called “Formatting Rich-Text Data” respectively), LiveCycle forms can also
embed referenced content from within data, in a manner equivalent to variable substitutions in field-
nominated format.

Field-nominated data can contain references, identified by the “@” (at-symbol) prefix, to the value of
another field or previously defined variable. For instance, the following field-nominated data would
populate the message field with the value "You saved 20 dollars":

^field saved_amount
20
^field message
You saved @saved_amount dollars

To accomplish an equivalent substitution from the data with a LiveCycle form, special XML markup
must be placed within rich-text data. The following example XML data would produce the same
result as the above field-nominated example:

<saved_amount>20</saved_amount>
<message>
 <body xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
 xmlns="http://www.w3.org/1999/xhtml">
 <p>You saved dollars</p>
 </body>
</message>

Note that in both of the above examples, it is assumed that there is a saved_amount field on the form
(possibly a hidden field).

An optional xfa:embedMode attribute on the embedded reference can determine whether or not the
referenced value should be inserted with or without any of its original formatting. References can
also be expressed as an XML id reference or URI by providing a xfa:embedType attribute with a value
of uri.

Version 3 – April 2012 Page 39 of 58

One interesting capability of field-nominated variable substitutions is that they can be combined into
compound references that are evaluated from right to left. In other words, given the following
example, the value of the message field would be "You saved 30 dollars":

^field savings_tier_1
20
^field savings_tier_2
30
^field client_tier
2
^field message
You saved @savings_tier_@client_tier dollars

In the above example, there are two levels of potential savings that can be provided to our imaginary
client, based upon the client's rating as a tier-one or tier-two client. Because the client_tier
substitution is evaluated first, the whole substitution expression is evaluated to "savings_tier_2"
and the value of the savings_tier_2 field is returned.

While this ability to combine variable substitutions provides a useful additional level of indirection, its
importance in the context of the field-nominated format stems in part from the fact that this feature
was established prior to advent of calculation expressions, and there are fewer overall opportunities
for scripting logic. By leveraging the capability to place calculations and scripting within a LiveCycle
form, the same goals can be achieved. Consider the following example XML data:

<savings_tier_1>20</savings_tier_1>
<savings_tier_2>30</savings_tier_2>
<client_tier>2</client_tier>
<message>
 <body xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
 xmlns="http://www.w3.org/1999/xhtml">
 <p>You saved dollars</p>
 </body>
</message>

In the above example, the same data is provided to populate the two different levels of savings and
the particular level of savings that should be awarded to the client. However, the embedded
reference is to a field named saved_amount for which no data is supplied. In order for this example to
work, a field must be placed on the form with a calculated value that determines the savings value.
The saved_amount field may have a JavaScript calculation such as the following:

if (client_tier == 1) {
 return savings_tier_1
} else if (client_tier == 2) {
 return savings_tier_2
} else {
 return 0
}

Unicode

The characters within field-nominated data are encoded according to the encoding scheme specified
by one or more ^symbolset commands within the data, or as part of options specified on the ^job
command. The range of characters (the character set) available at any particular point in the data is
the range of characters that can be accessed by the encoding scheme.

Central supports a wide range of encoding schemes, including the UTF-8 Unicode encoding. Prior to
the common use of Unicode, the ^symbolset command was often invoked to access characters that
were simply unavailable in any single character set. For instance, data that incorporated characters
from both European and Asian languages would utilize the ^symbolset command when switching

Version 3 – April 2012 Page 40 of 58

between these languages and the corresponding encoding schemes. The ^symbolset command
also supports Unicode encodings such as UTF-8, providing a means to address the range of Unicode
characters without switching among encodings within the data.

XML supports only characters found within Unicode. Unlike the field-nominated format, the entire
content of an XML resource may only be encoded in a single encoding scheme. However, this should
not be a limitation given the vast range of addressable characters in Unicode. XML also provides a
mechanism to address individual characters by either a symbolic or numeric reference.

The encoding scheme of an XML resource is indicated by the XML declaration, appearing at the
beginning of the resource (e.g. <?xml version="1.0" encoding="UTF-8"?>)

Binding Data to Forms

In Central, the process of combining a range of data with a form, to generate a final document, is
commonly known as data merging. The data is merged into the fields in a manner that evokes the
classical operation of merging names and addresses with mailing labels in a word processor.

With LiveCycle Output the equivalent process of combining a range of data with a form is not known
as merging; it is known as data binding. This difference in terminology speaks to the different nature
of how XML data is bound to an XML-based form designed with LiveCycle Designer.

Within XML languages, and within HTML oriented technologies on the web, the notion of making
connections between units of information for a variety of purposes is commonplace. The location of a
unit of information within an XML document may be connected to another location within the same
XML document or within another XML document. These connections are the bindings, and the
connections between a form and data are data bindings.

The process of combining data with a form could be considered as either a process of pushing data
items into the form, or the form pulling from the data. In one case the data file is controlling the
process, and in the other case the form is controlling the process. This distinction is important
because it determines whether the control is in the hands of the person responsible for developing
the data, or the person responsible for designing the form.

Central exhibits a data-driven approach, where the commands in the data are in control over the
generated document. A form, especially a form utilizing dynamic subforms, can be designed as loose
collection of subforms that will be assembled in a sequence and populated with data according to
the field-nominated commands encountered in the data.

LiveCycle Output operates primarily in a form-driven approach where the form contains the rules
that determine how the final document will be generated. However, LiveCycle Output also permits
the designer of a form to indicate where the form should cede a degree of control to the data.

This chapter will describe these mechanisms and how they differ from Central.

Global Fields and Global Data

Globals are a mechanism for the very common requirement of having a single data value appear in
more than one field on a form. Global fields can be defined with the Output Designer, and global
data values can be defined from within a field-nominated data file or accompanying preamble. In

Version 3 – April 2012 Page 41 of 58

either case the effect is the same: data that is recognized by Central as global is merged into the
appropriate range of like-named global fields designed into the form.

Global data is handled differently when using XML data with Central. A special XML attribute,
xfa:match="many", is recognized on any element, and this instructs Print Agent to process the
associated data value as a global data value within the scope of the current document.

When Central has finished processing the data for the current document, the global data values
created with the xfa:match="many" attributes are forgotten, and will not be available to be merged
into the successive documents generated from the same data value. Put another way, a global data
value defined within the context of one document is not carried forward into the processing of
successive documents. This behavior has been a challenging aspect of how Central's support for XML
data is processed. The common requirement to define a global data value that is merged into a series
of consecutive documents isn't accommodated by this behavior.

The behavior of global fields in LiveCycle forms is more flexible, providing a means to merge data
into multiple fields within a form, as well as mechanism to merge global data across multiple
documents generated from a single range of XML data.

The first method to merge a single data value into multiple fields of a LiveCycle form is to simply use
LiveCycle Designer to bind fields to the same data value. By doing this, there is nothing special,
nothing global, about either the fields or the associated data value; but, the effect is equivalent to
common use of globals within Central. It is not required that the name of the data value matches the
name of the field, nor that the multiple fields each have the same name. By binding the fields to a
data value within LiveCycle Designer, the respective naming of the data value and corresponding
fields becomes irrelevant.

The second method is to indicate with LiveCycle Designer that one or more fields, each with the same
name, are global. This will not produce the same behavior as the previous scenario of binding
multiple fields to the same data value, because LiveCycle Output expects to find a data value, with
the same name as the global fields, located outside of the current data record.

In the following example XML, data for two separate invoice documents is represented. And prior to
either invoice, a data value named date is defined. Assuming the invoice form has been designed in
LiveCycle Designer such that a field named date is defined as global, the value of the date data value
will be bound to the date field of each generated invoice.

Global data placement in XML

<invoices>
 <date>Sunday March 31, 2007</date>
 <invoice>
 ...data for the first invoice...
 </invoice>
 <invoice>
 ...data for the second invoice...
 </invoice>
</invoices>

Both LiveCycle Output mechanisms of merging individual data values into multiple form fields
produce different effects, address different use-cases, are complementary, and can be combined
within a form. Choose the appropriate solution depending on whether you need to simply merge
data into multiple fields within a form, or merge data into multiple fields across consecutively
generated forms.

Version 3 – April 2012 Page 42 of 58

Form-Driven Data Binding

A form-driven approach to generating a document occurs when the form contains all of the rules
necessary to generate a document by binding the data to the form fields and subforms.

By explicitly connecting form objects to specific data items in LiveCycle Designer, the data-binding
properties of the form objects are populated. Because of these explicitly designed bindings, the
names of the form objects, and their location within the structure of the form, do not need to
correspond to the names or position of the associated data items. The bindings determine how the
form is constructed and populated with data.

For more detailed information on data-binding with LiveCycle Designer, consult the LiveCycle
Designer product documentation.

Data-Driven Data Binding

Data-driven data-binding occurs when a form is designed to permit the data to take some control
over how the form is generated from the data. Form-driven data-binding places an emphasis on
defining rules that describe how the document will be constructed, and storing these rules within the
form itself. In contrast, a form intended to facilitate a data-driven approach will have fewer rules
defined, and will rely upon the particular sequence of data to drive the process of constructing the
document.

When a form object lacks an explicit data-binding, LiveCycle Output attempts to match the form
object by name to a data item that has not yet been bound to another form object. For more
information on this approach, consult the XFA Specification for information on the topics “Data
Binding” and “Automatic Data Binding”.

Multi-Record Data

Often there is a need to generate multiple documents from a single data file that contains multiple
records of data. Because XML has a requirement that there be only one outermost element, multiple
records must be enclosed within a single, often arbitrary, element. Consider the following example
XML data:

Multi-record data:

<batch>
 <invoice>
 …data elements for the first invoice…
 </invoice>
 <invoice>
 …data elements for the second invoice…
 </invoice>
</batch>

In the above example, two records of invoice data are enclosed within a batch element. The name of
the outer element, in this case a batch element, is not special – it only serves to satisfy the XML
requirement of a single outermost element. Also, the records within this example all represent the
same type of form: an invoice. However, data representing different types of forms can be
represented within a single data file, as follows:

Version 3 – April 2012 Page 43 of 58

Multi-record heterogeneous data:

<batch>
 <invoice>
 …data elements for the first invoice…
 </invoice>
 <purchase_order>
 …data elements for a purchase order…
 </purchase_order>
 <invoice>
 …data elements for the second invoice…
 </invoice>
</batch>

In order for LiveCycle Output to distinguish between a data file intended to produce a single
document, versus data intended to produce multiple documents, LiveCycle Output must be
informed of the element name that signifies the records, such as invoice. In cases of heterogeneous
record data, such as the above mix of invoices and purchase orders, the level of the element within
the XML structure is provided instead of an element name. A record element level of 2 (two) would
indicate that each second level element in the above examples represent a record.

The record element name or level can be specified as a property on an output service operation from
within LiveCycle Workbench, or programmatically as a property via the LiveCycle Output API.

For more information on record mode handling, consult the LiveCycle Output product
documentation, or the topic “Record Mode” in the XFA Specification.

Document Package Creation:

Multi-record data can be combined with a feature, known as Search Rules, where LiveCycle Output
automatically selects the appropriate form for a data record (the section called “Identifying the Form”
provides more information).

Search rules and multiple records of heterogeneous data can be usefully combined to produce a
document comprised of several forms that are distinct, but related by a common purpose. This
resulting document is often referred to as a document package.

Consider a scenario where a document package is comprised of a letter, followed by a financial
document (such as a loan), and concluded with a document intended to capture one or more
signatures. These individual documents can be designed and maintained separately, and reused
within different document package scenarios. Given an appropriate set of data records, and
combined with search rules to select the appropriate forms, a unique document package is
constructed.

A new capability in LiveCycle Output ES, dynamic XDP assembly, provides a more complete solution
for document package creation; the Assembler service allows a custom XDP form to be generated
which can then be formatted using LiveCycle Output. The Assembler service can insert one or more
subforms at insertion points defined in XDP forms by LiveCycle Designer ES and combine individual
forms (including those with insertion points) into one XDP form.

Central achieves an equivalent result through the use of the ^form command to vary between a
number of different forms within one data file; page numbers will be continuous throughout the
document produced by Central. A similar document package produced by LiveCycle Output using
search rules will exhibit page numbering that resets for each document within the overall document
package; the Assembler service method can achieve either result.

Version 3 – April 2012 Page 44 of 58

Modifying Form Objects from Data

Typically data binding is strictly the process of connecting the content of a form field with a data
value, but LiveCycle Output forms provide an additional capability to have other properties of form
objects retrieve their values from the data. Subform, form fields, radio-button groups, and even static
form objects (regions of text, images, etc.) can be configured to bind one or more of their properties
to the data.

One example for binding the properties of a form object to data is populating the caption property of
a field from the data. A field’s caption is the visible label, or prompt, that informs the user of what
information

Here a just a few simple scenarios where this capability is useful:

• Populating the items of a drop-down list from the data.

• Altering the field prompt, or caption, based on a data value.

• Altering the validation error messages of a field, based on a data value.

The ability to bind form object properties to data is activated by selecting Show Dynamic Properties
from the Object Palette within LiveCycle Designer, or by selecting Show Dynamic Properties from
the Tools > Options > Data Binding dialog. Properties that support binding are then highlighted in
the user-interface, and may be bound to data. Consult the LiveCycle Designer product
documentation for more information on “Dynamic Properties”.

Version 3 – April 2012 Page 45 of 58

6. Document Generation

Agents and Services

Central functionality is exposed by individual software components known as agents, such as the
most commonly used Print Agent that generates output. Agents are invoked according to a set of
rules expressed in the Central Job Management Database (JMD).

LiveCycle is also comprised of individual software components, known as services, that perform
specific operations. LiveCycle Output provides service operations for combining data with a form,
generating output, sending output to a printer, and more.

Conceptually similar to the job definitions within the Central JMD, LiveCycle services and their
operations can be assembled together to perform complex tasks by constructing processes with the
LiveCycle Workbench, a graphical design environment for developing processes.

Invoking LiveCycle Output

The primary mechanism that Central utilizes to receive data files, or jobs, for processing is the
collector directory: a location on the file system watched by Central. Any file written to the collector
directory, depending on how Central is configured, may be eligible for processing. In addition to the
collector directory, data files may be submitted to Central via name pipes, a print queue, or email.

LiveCycle Output can be invoked in a number of different ways. A Java program can take advantage
of the LiveCycle Java API and invoke LiveCycle Output directly. A web-service interface is also
provided to invoke LiveCycle via SOAP messages, REST or Flex remoting. LiveCycle may also be
invoked via email, or via a mechanism called watched folders that is equivalent to the collector
directory concept in Central.

Central provides a Mail Reader Agent that can be configured to monitor a mailbox for new messages,
and any received messages are deposited into the Central collector directory. LiveCycle provides an
Email Service that may be configured to monitor an email account for new messages (supported
protocols include POP3, and IMAP) and process any data file attachments. The result of processing
these data files, possibly generated PDF files, can be sent back to the originating user or another user,
by the Email Service.

LiveCycle watched folders provide a similar range of functionality to the Central collector directory.
The number and location of watched folders is determined by the configuration settings of the
LiveCycle server. Individual watched folders can be configured to invoke a particular LiveCycle service
operation, such as generating a PDF document, or printing to a PostScript printer. Separate
directories can be configured to receive the resulting output, capture files that failed to process
successfully, and hold preserved copies of input files.

Identifying the Form

A typical invocation of LiveCycle Output will include, at a minimum, two resources: a data file, and a
form file. In a simple case, the form file may be specified as one of the properties on the Output
service operation, where a process to generate output has been designed within LiveCycle

Version 3 – April 2012 Page 46 of 58

Workbench. Multiple processes could be designed, each configured to generate output with a
particular form.

Instead of explicitly specifying the form as part of the process configuration, an alternative is to create
a series of rules that associate a search pattern with a form. This mechanism is similar to the Central
JFNOJOB capability. For each received data stream, LiveCycle Output will perform a text search from
the beginning of the data, seeking to match against any of the supplied search patterns. It is
important to note that the search is a basic text search over the data, and does not first parse the XML
data. Therefore, the search pattern could be designed to match against either the markup, or
content, of the data. The number of bytes from the beginning of the file is also configurable. Upon
finding a match, the data will be processed with the form associated with the search pattern. A
default form file may also be specified, to be used when no search patterns are matched against the
data. When this feature is combined with multi-record data files, it is possible to automatically select
the appropriate form for each record.

For more information on this functionality, consult the LiveCycle Output documentation for a
discussion of “Search Rules”.

Document Generation and Print Options

In addition to providing a data file, and optionally specifying a form file, a number of other processing
options are available for customizing how the generated PDF, or printed output, will be produced.

Generic options include: specifying whether LiveCycle Output should generate one output stream, or
multiple output streams; the form identification search rules; and, identifying the data elements that
signify record boundaries. PDF specific options include the desired PDF version and conformance
level; and, print specific options such as adjusting the page origin.

Printing is achieved in LiveCycle Output using the sendToPrinter service; it supports shared printer,
CUPS, LPD, CIFS, and direct printer IP printing methods.

For more information on the generic, PDF, and print options, consult the LiveCycle ES documentation
for a discussion of the PrintedOutputOptionsSpec, PDFOutputOptionsSpec, and sendToPrinter
interfaces respectively.

Testing and Previewing

Testing your form, and its data bindings, from within the Designer software saves both time and
paper, by avoiding the need to deploy the forms to the server and generate a printed test output.

Output Designer provides the ability to test both static and dynamic forms with its Test Presentment
feature. Forms may either be tested with an existing data file, or Output Designer can create a sample
data file suitable for testing the form. Forms can be viewed as a PDF using Reader or printed to a
target printer.

LiveCycle Designer provides an equivalent capability to test and preview forms with sample data. The
resulting form, populated with data, is viewed as a PDF preview directly within the Designer software.
From within the Designer's Form Properties dialog, the type of preview may be chosen as either a
static interactive form, a dynamic interactive form, or a non-interactive printable form. The form may
be previewed with an existing XML data file, or sample data may be generated by clicking the
Generate Preview Data button from within the Form Properties dialog.

Version 3 – April 2012 Page 47 of 58

Another convenient way of performing a print test is available from the Print dialog within LiveCycle
Designer. In addition to the common options provided by the Print dialog, LiveCycle Designer
extends the dialog with settings to specify sample data, whether the form should be printed in a
simplex or duplex mode, and the target print device configuration. In this way the form can be
printed directly to a target printer to see a printed result.

Device Profiles

Forms created with Output Designer are designed specifically for one or more specific output formats
or devices. However, forms created with LiveCycle Designer are not constrained, or targeted, for a
particular format or device; they are generic forms that LiveCycle Output uses to produce output to a
particular format or device at run-time, rather than making this decision at design-time.

Output Designer provides a mechanism for you to select one or more target formats and printers, by
selecting from the available presentment targets. Depending on which presentment targets you
select, a range of page sizes and fonts become available based upon the paper and font support of
the devices. When creating a new form in Output Designer, your initial workspace, page size and
orientation, and available fonts are all determined from the particular presentment target that has
been nominated as the default presentment target. Before a form can successfully generate output
to a presentment target, the form must be compiled after selection of the presentment target with
Output Designer.

Advanced users of Print Agent and Output Designer may be aware that each supported presentment
target is actually described by the contents of a text file, located within the product installation
directory, with an .ics file extension. Hence, these files are commonly called ICS files. Because an ICS
file describes the supported features and capabilities of a Central presentment target, the Central
documentation references ICS files as the means for an advanced user to create or customize an ICS
file in order to more accurately support their particular printer. For example, while Central provides
built-in support for finishing options, such as stapling, on a number of supported printers, you may
have a requirement to print forms on a compatible PCL or PostScript printer that supports stapling
via a vendor-specific printer command. By customizing an ICS file to include the printer's specific
stapling command, or creating a new ICS file based upon an existing compatible ICS file, Print Agent
will be able to utilize the printer's stapling feature.

LiveCycle Designer does not require that a form be compiled, nor does it require the selection of
specific output formats or printers during the process of designing a form. When designing a form
with LiveCycle Designer, the page size and font capabilities of your target printer remain an
important consideration. LiveCycle Designer provides a wide variety of pre-defined page sizes, and
permits the creation of custom page sizes.

The set of fonts available within the LiveCycle Designer workspace is primarily determined from the
fonts present on the system. In order to accommodate unique font requirements, where the font may
not be present on the system, LiveCycle provides font mapping capabilities for the server-side
runtime components of LiveCycle Output, and the LiveCycle Designer environment. Font mapping is
further described in the section called “Font Availability and Mapping”.

The supported features and capabilities of printers supported by LiveCycle Output are described by
XDC files, which are conceptually similar to Output Designer's ICS files. In the same way that ICS files
can be modified to accommodate the unique features of a particular printer, XDC files may also be
customized, or new XDC files may be created based upon an existing XDC file, by utilizing the XDC
Editor tool within the LiveCycle Workbench.

Version 3 – April 2012 Page 48 of 58

LiveCycle Designer also utilizes its own XDC file, Designer.xdc, to determine the range of page sizes,
additional fonts, and other features, that will be exposed in the LiveCycle Designer workspace.

LiveCycle Output provides an additional XDC file, Designer.xdc.label, appropriately configured for
designing printer labels, with page sizes and fonts appropriate for use with supported label printers.
By copying the Designer.xdc.label file to a file named Designer.xdc (backup the original
Designer.xdc first), and after restarting LiveCycle Designer, these label-specific features will be
exposed in the LiveCycle Designer workspace.

Font Handling

Font Availability and Mapping

The set of fonts available within Output Designer is determined by the fonts available within selected
presentment target. For instance, if the presentment target selected is the Generic Microsoft
Windows Driver, all of the fonts available on the system are available. On, the other hand, if the
presentment target is the Adobe Portable Document Format, then the available fonts correspond to
the set of standard PDF fonts. Output Designer also provides mechanisms to further customize the
set of available fonts associated with a presentment target. Font mapping can also occur when the
final document is generated by Print Agent.

The set of fonts available within the LiveCycle Designer workspace is primarily determined from the
fonts present on the system, plus any fonts enumerated in the Designer.xdc file (as described in the
previous section the section called “Device Profiles”). When ensuring that fonts are present on your
systems, consider that fonts must be available both on the systems running LiveCycle Designer, as
well as the servers running the LiveCycle server components.

In order to accommodate the unique font requirements of printers, LiveCycle Designer and Output
provide a robust font mapping capability. LiveCycle Designer, within the product installation
directory, has a Designer.xci configuration file that contains the default set of font mappings. This
configuration file can be extended to accommodate additional font mappings. However, this
configuration file only impacts the LiveCycle Designer workspace. Font mappings intended to be in
effect at the time of processing a form in concert with a particular XDC device profile must also be
present in the target XDC file.

The following is an excerpt from the Designer.xci, showing the XML markup describing a number
of font mapping statements that will map requests for a variety of Helvetica fonts to similar Arial
fonts:

Designer.XCI font mapping

<equate from="Helvetica Black_*_*" to="Arial Black_*_*" force="0"/>
<equate from="HelveticaBlack_*_*" to="Arial Black_*_*" force="0"/>
<equate from="Helvetica-Black_*_*" to="Arial Black_*_*" force="0"/>
<equate from="Helvetica_*_*" to="Arial_*_*" force="0"/>
<equate from="Helv_*_*" to="Arial_*_*" force="0"/>

The font mapping capabilities provide for very fine-grained control over mapping. Whole typefaces
can be mapped, or an individual typeface with a particular weight and posture can be mapped. The
force attribute denotes whether a font should be always mapped, or only when the requested font is
not available.

Version 3 – April 2012 Page 49 of 58

The order of the equate font mapping statements is important, with the statements evaluated in
order until a matching statement is encountered.

Font Embedding

LiveCycle forms can download, or embed, additional fonts into the generated output. When output is
generated for either PCL or Postscript, preference will be given to fonts that are known to be
standard fonts included on the printer. These fonts are known as printer-resident fonts.

Because font downloading is avoided in such cases, using printer-resident fonts results in less
generated PCL or Postscript. To design a form that will use printer-resident fonts, choose typeface
names in LiveCycle Designer that match those available on the printer. A list of fonts supported for
PCL or Postscript can be found in the corresponding device profiles (XDC files). Alternatively, a font
mapping can be created to map non-printer-resident fonts to printer-resident fonts of a different
typeface name. For instance, in a Postscript scenario, references to the Myriad Pro typeface could be
mapped to the printer-resident Helvetica typeface.

PDF and PostScript output can support embedded Type-1, TrueType, and OpenType fonts. PCL
output can support embedded TrueType fonts. However, Type-1 and OpenType fonts are not
embedded in PCL output, and therefore any content formatted with Type-1 and OpenType fonts is
rasterized and generated as a bitmap image which can be large as well as slower to generate.

Downloaded or embedded fonts are automatically subsetted when generating PostScript, PCL, or
PDF output. This means that only the subset of the font glyphs required to properly render the
generated document will be included in the generated output.

No font downloading or subsetting capability is provided when generating output for label printers.

Central provided a capability where font downloading was tracked and managed, in an effort to only
download fonts to a presentment target when Central considered that the font had not previously
been downloaded. However, this capability was fragile, as the actual downloaded fonts on the
presentment target could easily get out of sync with Central by simply cycling the power to the
output device. LiveCycle Output does not attempt to provide an equivalent font management
capability.

Paper Handling

Duplexing

Output Designer and Central provided a number of different ways of indicating whether a form
should be printed simplex (one-sided) or duplex (double-sided), and whether pages should be
duplexed along the left/long edge or top/short edge. These settings can be specified as a property of
the whole form, from within a field-nominated data stream, or as an option on the job definition or
Print Agent command-line.

LiveCycle Designer exposes control over duplex printing in two ways, depending on whether the
form is intended to be generated to a PDF and subsequently printed from Adobe Reader or Acrobat,
or printed directly to a PCL or PostScript device.

When the form is intended to generate a PDF, settings related to how the PDF should be printed can
be configured from the Form Properties dialog within LiveCycle Designer. These settings include the

Version 3 – April 2012 Page 50 of 58

number of copies to print, and duplexing. Subsequent printing of a PDF document with Adobe
Reader or Acrobat will respect these settings.

Duplexing can also be specified via the pagination property on the LiveCycle Output service
operations available within LiveCycle Workbench, and also available from the Java API and web-
service interface. For more information on the generic, PDF, and print options, consult the LiveCycle
ES documentation for a discussion of the PrintedOutputOptionsSpec, PDFOutputOptionsSpec,
and sendToPrinter interfaces respectively.

In addition to basic selection of simplex or duplex printing, there are additional capabilities available
in LiveCycle Designer to design forms that adjust according to simplex and duplex printing scenarios.

Master pages can be assigned to the odd numbered (front side) or even numbered (back side)
printed surfaces. In this way, slightly different master pages can be designed for the front and back,
and LiveCycle will automatically select the appropriate master page depending on whether it is
currently printing on the front or back of the page. One common use case for this capability is to
create similar master pages that place the running page count on either the left or right side of the
page, and assigning the master pages as odd or even to ensure that the page count is always on the
inside or outside of a duplex printed document.

On a finer-grained level LiveCycle Designer provides a presence property on form objects that
commonly is used to indicate that an object should be visible or hidden from a PDF screen display of
the document or when printed. Form objects can also be configured with a presence setting that
indicates the object should only appear when the document is printed simplex, or duplex.

Tray Handling

Output Designer distinguishes between paper (page) size, and which input tray on the printer should
provide the requested paper. This accommodates scenarios where a printer may have multiple
different types of a particular paper size loaded into different input trays, permitting a document to
select paper from individual trays on a per-page basis.

LiveCycle forms also provides the capability to select paper from different input trays, but LiveCycle
Designer does not expose paper size and input tray selection as two distinct properties. Instead,
LiveCycle Designer permits any master page to be associated with a paper type selected from a set of
supported paper types defined in the Designer.xdc device profile. Within the device profile, each
paper type can be configured to select paper from a particular input tray.

LC Designer provides four duplicates of common paper types for Letter, A4 and B4 JIS paper sizes;
specifically to accommodate paper tray selection. These duplicate paper types are given the
following names “Letter Plain”, “Letter Letterhead”, “Letter Color”, and “Letter Special” and there is a
similar set for A4 and B4 JIS.

The XDC Editor within the LiveCycle Workbench is used to map or assign a physical input tray to a
paper type; typically the four names provided in LC Designer will cover most tray selection needs. For
example, the deployed device profile could be modified such that the “Letter Color” paper type will
cause the printer to select yellow paper loaded into a secondary letter-sized input tray. Because
LiveCycle Output matches paper types used in the form, by name, against paper types defined in the
device profile deployed to the server, only the deployed device profile needs to be modified to
ensure the appropriate input tray selection. Consult the XDC Editor documentation for more

Version 3 – April 2012 Page 51 of 58

information on editing device profiles and deploying them to your design and production
environments.

While the 4 provided paper types will normal be adequate; it is possible to create additional paper
types. Additional paper types can be used in the XDC editor simply by making up a new paper type
name, but it must exist in LiveCycle Designer to be used, in order to add paper types the
Designer.xdc file must be hand edited; copying an existing entry of the correct paper size and
changing the name as desired.

Faxing

Central provides the ability to fax documents via direct integration with fax servers, and includes
device profiles accordingly. In addition, the field-nominated data format includes a command, ^fax,
dedicated to this purpose. LiveCycle Output takes a different approach to fax support.

Recognizing that modern fax servers accept PDF, generic PCL or Postscript streams (often via a
watched folder), and receive fax addressing information by way of an accompanying command file,
LiveCycle does not provide device profiles for specific PDF, Postscript, or PCL fax servers; nor does it
require that a form be designed specifically for faxing, or include a command dedicated to providing
fax addressing information.

Adding a fax destination to your document output solution is accomplished by creating a process
definition in LiveCycle Workbench that produces the document output, along with the addressing
information, and delivers both to a fax server. For an example of how to create such a fax process, see
the sample fax output process provided as a service sample for LiveCycle Output. It can be found
here: http://www.adobe.com/devnet/livecycle/?view=samples under LiveCycle Service Samples.

http://www.adobe.com/devnet/livecycle/?view=samples

Version 3 – April 2012 Page 52 of 58

7. Web Output Pak

The preceding chapters have primarily focused on Central document generation. However, the Web
Output Pak, as part of the Central solution, provides a similar set of document generation capabilities.
In fact, Web Output Pak uses the document generation and output software component from
Central, and uses forms created with Output Designer.

Web Output Pak processes data received from a web browser, or in XML format, and data is
manipulated via a programmatic interface similar to an XML DOM. Concepts and experience gained
from working with XML and DOM-style interfaces in Web Output Pak is beneficial when moving to
the standards-based XML tools and interfaces of LiveCycle Output.

Because Web Output Pak is a subset of the overall Central product family, the other sections of this
document are also relevant in the context of many Web Output Pak solutions, and this section simply
addresses several topics specific to Web Output Pak.

XPR and Transaction Processing

Web Output Pak applications are developed by coordinating the data handling, invocation of built-in
and custom software agents, and output generation, by a markup language known as XML
Processing Rules (XPR) and a rule processing engine known as the Transaction Processor. Because
XPR markup is effectively a special-purpose programming language, there is no migration or
conversion mechanism for XPR files to an equivalent mechanism in LiveCycle Output, such as
LiveCycle process definitions.

In place of Transaction Processor and XPR, LiveCycle provides the Process Management component
and the ability to assemble LiveCycle services and operations with the LiveCycle Workbench.

For more information, consult the product documentation on LiveCycle Process Management and
LiveCycle Workbench.

Agents

Web Output Pak provides a number of built-in software agents, including the HTML Agent and PDF
Agent that generate HTML and PDF output respectively.

The HTML Agent accepts data and populates regions of an HTML template file that contains Web
Output Pak specific markup, generating a resulting HTML file that is a combination of the original
HTML template and the supplied data. LiveCycle Output does not provide a migration or conversion
mechanism for these HTML template files. However, LiveCycle Forms does have the capability to
generate HTML output from forms created with LiveCycle Designer.

The functionality of PDF Agent is equivalent to the PDF output capability provided by Central Print
Agent, and generating PDF output is a core capability of LiveCycle Output.

Version 3 – April 2012 Page 53 of 58

8. Hosting Environment

The Central product is a native application designed to run on a number of supported platforms (for
more detail see table at Chapter 2, Comparison Summary. The hosting environment for Central is
simply a supported operating system.

LiveCycle ES is a Java enterprise application, also known as a J2EE (Java 2 Platform, Enterprise Edition)
application. As a J2EE application, LiveCycle ES must be run within a supported J2EE application
server environment, installed on a supported platform. The application server, and the J2EE
foundation, provides a consistent technology foundation for deploying and managing multi-tier
enterprise applications. Scalability can be configured and managed at the level of the J2EE
application server, whereas attempting to manage scalability with Central is usually reduced to
running several instances of Central and rolling your own solutions for interacting with, and
managing, these instances.

LiveCycle ES also requires a database for long-term storage of information such as process definitions
and state as well as the application repository. These system requirements for LiveCycle ES are
summarized in the table at Chapter 2, Comparison Summary, and in the following guide:

• “Preparing to Install LiveCycle ES (Single Server)”
http://www.adobe.com/go/learn_lc_documentation_10

It is also important to recognize that LiveCycle ES is designed as a server-based solution, and while
installation on a workstation is useful for application development purposes, for production use
LiveCycle ES should be installed on an appropriately configured server. The practice of installing
many instances of Central across a number of workstations as a means of distributing processing and
achieving some manner of scalability is not practical with LiveCycle ES.

To easily achieve a production-capable LiveCycle ES installation on a supported Windows platform,
Adobe provides a turnkey installation option that installs LiveCycle ES a JBoss application server,
and a MySQL database server providing a fully functioning installation. Alternatively, LiveCycle ES
may be installed to integrate with your choice of supported application server and database server.
Detailed instructions on installation and configuration are provided in the LiveCycle product
documentation, including the following guide:

• “Preparing to Install LiveCycle ES (Single Server)”
http://www.adobe.com/go/learn_lc_documentation_10

http://www.adobe.com/go/learn_lc_documentation_10
http://www.adobe.com/go/learn_lc_documentation_10

Version 3 – April 2012 Page 54 of 58

9. Field-Nominated Commands

The intent of this chapter is to review a number of the commands that comprise the field-nominated
format used by Central agents, especially Print Agent, and provide a brief discussion of how the
command relates to an equivalent capability in LiveCycle Output. Not all commands supported by
Central or Print Agent are included.

In most cases, the commands will not relate directly to XML markup that can be interpreted by
LiveCycle Output. This is because, as described in the section called “Data Formats”, field-nominated
data is both a command language and a data format, whereas XML data is strictly a data format.
Nonetheless, given that so much of the Central and Print Agent functionality is exposed through
field-nominated commands, it is valuable to present them here as a way of referring to LiveCycle
Output functionality.

^continue

See the section called “^record”.

^copies

This field-nominated command, when it appears at the beginning of a field-nominated data file, sets
the number of printed copies that shall be produced by Print Agent.

In LiveCycle Output, the number of copies is set as a copies property on the
PrintedOutputOptionsSpec interface or the output option properties exposed within LiveCycle
WorkBench.

^currency

This field-nominated command sets a number of localization properties associated with the
formatting of monetary values, such as the currency symbol, decimal point, thousands separator, and
more.

LiveCycle forms contain the equivalent property values for one or more locales associated with the
form. The appropriate locale information is automatically incorporated into the form definition by
selecting one or more locales from within LiveCycle Designer. In addition, custom locales can be
created. This is discussed in the section called “Locale Settings”.

^data

See the section called “^record”.

^define

This field-nominated command is used to assign a value to a dictionary variable.

With the field-nominated format there is no other way, other than dictionary variables, to store
information in the data in a manner where it can later be recalled from elsewhere in the data or

Version 3 – April 2012 Page 55 of 58

preamble processing. However, LiveCycle forms operate with all of the XML data loaded into a DOM,
accessible to scripting and data bindings. Therefore the need for an additional mechanism for
storing, and later recalling, data is not required with LiveCycle forms.

In addition, it should be noted that LiveCycle forms may be designed to include form variables. For
more information see the section called “Form Variables”.

^duplex

This field-nominated command controls how the document will be printed in duplex mode.

A LiveCycle form cannot be set to duplex from within the data. Duplexing may be controlled from
within LiveCycle Designer as one of the form properties, or determined by specifying an appropriate
pagination property value within a process definition or passed to the LiveCycle Output API. For
more information see the sections called “Duplexing” and “Device Profiles”.

^eject

This field-nominated command causes Print Agent to indicate a page break in the generated output.

Within LiveCycle forms, all control over pagination is specified within the form itself, using LiveCycle
Designer.

^field

This is the most commonly used field-nominated command. It directs the following data into a
particular field indicated by name.

The equivalent mechanism in XML data is the markup tags themselves, where the tag names can
optionally indicate the field name to which the enclosed data belongs. For a discussion of this, see
the section called “Data Formats”.

^file

This field-nominated command causes a referenced data file to be included, at the location of the
command, in the referencing data file.

One way to achieve this in XML is by using a markup feature related to XML known as XInclude.
However, LiveCycle Output does not currently support XInclude.

^form

This field-nominated command causes Print Agent to switch processing to another form file.

While LiveCycle forms do not provide an equivalent capability of switching forms from within data,
there is a capability to reference external fragments from within a form, and a feature to
automatically select an appropriate form based on the data known as search rules. For more
information on search rules, see the section called “Identifying the Form”. For more information on
fragments see the section called “Fragments”. As well see information on dynamic XDP assembly here
http://help.adobe.com/en_US/livecycle/9.0/dynamic_assembly_guidelines.pdf

http://help.adobe.com/en_US/livecycle/9.0/dynamic_assembly_guidelines.pdf

Version 3 – April 2012 Page 56 of 58

^global

This field-nominated command defines a global data value that will automatically populate fields
with the same name as the global value.

LiveCycle forms do not permit the data to indicate that values should be globally applied to form
fields that share a common name. Global fields can be designated within LiveCycle Designer, and
there is a convention for defining a data value that can be available across multiple records of data.
These capabilities are described in the section called “Global Fields and Global Data”.

^graph

This field-nominated command specifies that a referenced image file, rather than a text value, shall
be placed on the form at the location of a particular field.

LiveCycle forms provide a specific type of field designed to enclose an image, known as image fields.
Such fields can be populated with base-64 encoded data representing the image data, and additional
properties are provided by LiveCycle Designer to control how the image should be adjusted within
the dimensions of the field. Alternatively, the HTML img element can be used to insert a referenced
image file into a rich-text field. For more information, see the “Image Data and Rich-Text Reference”
of the XFA Specification. The rich-text format is also briefly discussed in the section called “Formatting
Rich-Text Data” of this document.

^group

This field-nominated command is intended to imply structure within a field-nominated format that
would be otherwise unstructured. It also causes preamble processing to be executed associated with
the referenced group, and is often used as a mechanism to instantiate a subform, transition to
another page, or switch to another form entirely.

LiveCycle forms rely upon the intrinsic capabilities of XML to describe structured data, and utilize this
structure information when binding the data to a form. In this way, structure can cause data to
populate specific subforms, on specific pages. In other words, the philosophy of utilizing XML data
with LiveCycle forms is to appropriately structure your data, appropriately structure your form into
subforms and subform sets in LiveCycle Designer, and express the relationship between the two
structures by adding data bindings to the form.

^inlinegraphbegin, ^inlinegraphend

These field-nominated commands provide a mechanism to embed image data directly within a data
file. See the section called “^graph” for more information.

^key

See the section called “^record”.

Version 3 – April 2012 Page 57 of 58

^macro

This field-nominated command causes a previously downloaded macro, a printer-resident cached
representation of a subform, to be immediately executed and included in the output.

This command provides a means to indirectly insert PCL or PostScript commands into the output
stream. There is no equivalent capability in LiveCycle forms.

^page

This field-nominated command causes Print Agent to perform a page break, and continue processing
on a specific page of the current form.

Within LiveCycle forms, the decision of when to perform a page break, and on which page to resume
processing, is strictly determined by the pagination rules designed into the form with LiveCycle
Designer.

^passthru

This field-nominated command is a very low-level command that sends a printer-specific byte stream
into the generated output, and subsequently to the print device. There is no equivalent capability in
LiveCycle forms. Some customization of LiveCycle Output's printer interface is possible by modifying
device profiles. See the section called “Device Profiles”.

^popsymbolset

See the section called “^symbolset”.

^pushsymbolset

See the section called “^symbolset”.

^record

This command is used to create a fixed-format record definition where the data is packed into rows
and columns of a textual data file. LiveCycle Output does not support fixed-record format data.

^symbolset

This field-nominated command informs Print Agent that subsequent data is encoded according to a
specific character encoding. During the processing of data, Print Agent can be instructed to
remember and recall specific character encodings with the ^pushsymbolset and ^popsymbolset
commands respectively.

LiveCycle Output processes XML data, and the XML specification requires that all of the character
content of an XML document be expressed in a single encoding of Unicode characters. For more
information see the section called “Unicode”.

Version 3 – April 2012 Page 58 of 58

^shell

This field-nominated command provides a mechanism to execute an external software program from
a specific point in the processing of the data file. LiveCycle Output does not provide an equivalent
capability.

^subform

This field-nominated command causes Print Agent to switch the currently active subform to a specific
subform within the current form, or a subform within another form.

LiveCycle forms to not provide a mechanism to call a specific subform from within the data. Instead,
LiveCycle forms rely upon the structure within XML data, and utilize this structure information when
binding the data to a form. In this way, structure can cause data to populate specific subforms, on
specific pages. In other words, the philosophy of utilizing XML data with LiveCycle forms is to
appropriately structure your data, appropriately structure your form into subforms and subform sets
in LiveCycle Designer, and express the relationship between the two structures by adding data
bindings to the form.

^tab

This field-nominated command defines, or resets, tab stop positions. Tab stops can be set for the
duration of applying data to the current field, or tab stops may be set that act as the default tab stops
for the duration of processing the entire job.

LiveCycle Output recognizes a subset of HTML markup to express text formatting within data, and
within the form itself. Additional LiveCycle-specific extensions to HTML markup are supported to
specify tab stops. For more information, see the “Rich-Text Reference” portion of the XFA
Specification.

^trayin, ^trayout

These field-nominated commands select a specified input tray, or output tray, respectively.

There is no capability in LiveCycle Output to indicate tray selections from within the XML data. Each
page of a LiveCycle form may be configured to select a particular paper size, and tray selection is
determined based on tray information associated with the paper size as defined by the device profile.
For more information, see the section called “Tray Handling”.

^$page

This field-nominated command causes the current page number to be set according to a supplied
value.

Within LiveCycle forms, page numbering is strictly a property of the form and of master pages in
particular. For more information see the sections called “Page Counts”, and “Master Pages”.

	Table of Contents
	1. Introduction
	Intended Audience
	Goals and Scope
	Organization of this Document

	2. Product and Technology Overview
	Why Move to LiveCycle ES?
	Processing
	Comparison Summary
	Related Documentation

	Terminology
	Form Design
	Data Integration
	3. Central Migration Bridge
	Overview of the Central Migration Bridge Services
	How the Central Migration services work
	The centralDataAccess service in detail

	Comparing LiveCycle Central Migration Bridge with Central
	Typical Usage Scenario
	Central Migration Bridge Samples
	Data Access, Merge and Print
	Transformation Agent and Page X of Y
	Data Access Service Component

	How is the Central Migration Bridge licensed

	4. Forms
	Importing Output Designer Forms
	Import Goals and Constraints
	Form Objects
	Global Fields
	Tables
	Graphics Formats

	Grouped Objects
	Foundation Pages
	Fonts
	Subforms
	Preamble Handling
	Working with Imported Forms
	The “import fields only” checkbox

	Basic Forms
	Multi-Part Forms
	Dynamic Forms
	Master Pages
	Preambles
	Expandable Objects
	Field Overflow
	Tables
	Floating Fields
	Calculations
	Fragments
	Form Variables
	Page Counts

	Locale Settings

	5. Data
	Data Formats
	Central Transformation Agent
	Moving to XML Data
	DAT is flat, XML is structured
	XML Data is Case-Sensitive
	Formatting Rich-Text Data
	Embedded Field References
	Unicode

	Binding Data to Forms
	Global Fields and Global Data
	Form-Driven Data Binding
	Data-Driven Data Binding
	Multi-Record Data
	Modifying Form Objects from Data

	6. Document Generation
	Agents and Services
	Invoking LiveCycle Output
	Identifying the Form
	Document Generation and Print Options

	Testing and Previewing
	Device Profiles
	Font Handling
	Font Availability and Mapping
	Font Embedding

	Paper Handling
	Duplexing
	Tray Handling

	Faxing

	7. Web Output Pak
	XPR and Transaction Processing
	Agents

	8. Hosting Environment
	9. Field-Nominated Commands
	^continue
	^copies
	^currency
	^data
	^define
	^duplex
	^eject
	^field
	^file
	^form
	^global
	^graph
	^group
	^inlinegraphbegin, ^inlinegraphend
	^key
	^macro
	^page
	^passthru
	^popsymbolset
	^pushsymbolset
	^record
	^symbolset
	^shell
	^subform
	^tab
	^trayin, ^trayout
	^$page

